Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Iris germanica L. rhizome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7045 KiB  
Article
Iris germanica L. Rhizome-Derived Exosomes Ameliorated Dihydrotestosterone-Damaged Human Follicle Dermal Papilla Cells Through the Activation of Wnt/β-Catenin Pathway
by Mujun Kim, Jung Woo, Jinsick Kim, Minah Choi, Hee Jung Shin, Youngseok Kim, Junoh Kim and Dong Wook Shin
Int. J. Mol. Sci. 2025, 26(9), 4070; https://doi.org/10.3390/ijms26094070 - 25 Apr 2025
Viewed by 835
Abstract
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated [...] Read more.
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated the therapeutic potential of exosomes derived from the rhizomes of Iris germanica L. (Iris-exosomes) in HFDPCs damaged by dihydrotestosterone (DHT). Iris-exosomes significantly reduced reactive oxygen species (ROS) levels, restoring mitochondrial membrane potential and ATP production, thereby mitigating oxidative stress and improving mitochondrial function. These effects occurred alongside enhanced cellular processes critical for hair follicle regeneration, including increased cell migration, alkaline phosphatase (ALP) activity, and three-dimensional (3D) spheroid formation, which replicates the follicle-like microenvironment and promotes inductive potential. Furthermore, Iris-exosomes stimulated the Wnt/β-catenin signaling pathway by enhancing glycogen synthase kinase-3β (GSK-3β), AKT, and extracellular signal-regulated kinase (ERK), leading to β-catenin stabilization and nuclear translocation, thereby supporting the expression of genes essential for hair growth. Taken together, these findings suggest that Iris-exosomes can be promising ingredients for alleviating hair loss. Full article
(This article belongs to the Special Issue Molecular Insights into Hair Regeneration)
Show Figures

Graphical abstract

18 pages, 3032 KiB  
Article
Protective Effect of Iris germanica L. Rhizome-Derived Exosome against Oxidative-Stress-Induced Cellular Senescence in Human Epidermal Keratinocytes
by Ji-Seon Kim, Hyun-Jeong Lee, Eun-Jeong Yoon, Hyunsang Lee, Youngeun Ji, Youngseok Kim, Si-Jun Park, Junoh Kim and Seunghee Bae
Appl. Sci. 2023, 13(21), 11681; https://doi.org/10.3390/app132111681 - 25 Oct 2023
Cited by 3 | Viewed by 2979
Abstract
Plant-derived exosomes can exert therapeutic effects against various dermatological conditions. Several studies have demonstrated that plant-derived exosomes can have positive effects on the skin, preventing aging, hyperpigmentation, and hair loss. In this study, the protective effects of Iris germanica L. rhizome-derived exosomes ( [...] Read more.
Plant-derived exosomes can exert therapeutic effects against various dermatological conditions. Several studies have demonstrated that plant-derived exosomes can have positive effects on the skin, preventing aging, hyperpigmentation, and hair loss. In this study, the protective effects of Iris germanica L. rhizome-derived exosomes (Iris-exosomes) on oxidative-stress-induced cellular dysfunction were investigated in human epidermal keratinocytes (nHEKs). Iris-exosomes with a diameter range of 100–300 nm were detected. In the cytotoxicity assay, Iris-exosomes with up to 107 particles per milliliter were found to possess no cytotoxicity, and we recovered H2O2-induced cell viability loss. In nHEKs, H2O2-induced ROS levels were significantly reduced using Iris-exosomes and additionally associated with increases in antioxidant enzyme transcription. The H2O2-induced SA-β-gal-positive nHEKs were decreased using Iris-exosomes; these effects correlate with the changed levels of cell cycle arrest marker p21. Furthermore, the H2O2-induced loss of in vitro wound-healing properties and early detection of keratin 1 and 10—keratinization markers—were restored to control levels using Iris-exosomes. Altogether, these results indicate the possibility that Iris-exosomes exert antioxidant and anti-senescence effects in order to protect against oxidative-stress-induced cellular dysfunction in nHEKs. Full article
Show Figures

Figure 1

24 pages, 495 KiB  
Article
Phytochemical Composition and In Vitro Biological Activity of Iris spp. (Iridaceae): A New Source of Bioactive Constituents for the Inhibition of Oral Bacterial Biofilms
by Lan Hoang, František Beneš, Marie Fenclová, Olga Kronusová, Viviana Švarcová, Kateřina Řehořová, Eva Baldassarre Švecová, Miroslav Vosátka, Jana Hajšlová, Petr Kaštánek, Jitka Viktorová and Tomáš Ruml
Antibiotics 2020, 9(7), 403; https://doi.org/10.3390/antibiotics9070403 - 11 Jul 2020
Cited by 39 | Viewed by 5331
Abstract
The inhibition and eradication of oral biofilms is increasingly focused on the use of plant extracts as mouthwashes and toothpastes adjuvants. Here, we report on the chemical composition and the antibiofilm activity of 15 methanolic extracts of Iris species against both mono-(Pseudomonas [...] Read more.
The inhibition and eradication of oral biofilms is increasingly focused on the use of plant extracts as mouthwashes and toothpastes adjuvants. Here, we report on the chemical composition and the antibiofilm activity of 15 methanolic extracts of Iris species against both mono-(Pseudomonas aeruginosa, Staphylococcus aureus) and multi-species oral biofilms (Streptococcus gordonii, Veillonella parvula, Fusobacterium nucleatum subsp. nucleatum, and Actinomyces naeslundii). The phytochemical profiles of Iris pallida s.l., Iris versicolor L., Iris lactea Pall., Iris carthaliniae Fomin, and Iris germanica were determined by ultra-high performance liquid chromatography-high-resolution tandem mass spectroscopy (UHPLC-HRMS/MS) analysis, and a total of 180 compounds were identified among Iris species with (iso)flavonoid dominancy. I. pallida, I. versicolor, and I. germanica inhibited both the quorum sensing and adhesion during biofilm formation in a concentration-dependent manner. However, the extracts were less active against maturated biofilms. Of the five tested species, Iris pallida s.l. was the most effective at both inhibiting biofilm formation and disrupting existing biofilms, and the leaf extract exhibited the strongest inhibitory effect compared to the root and rhizome extracts. The cytotoxicity of the extracts was excluded in human fibroblasts. The inhibition of bacterial adhesion significantly correlated with myristic acid content, and quorum sensing inhibition correlated with the 7-β-hydroxystigmast-4-en-3-one content. These findings could be useful for establishing an effective tool for the control of oral biofilms and thus dental diseases. Full article
(This article belongs to the Special Issue New Insights on Biofilm Antimicrobial Strategies)
Show Figures

Figure 1

12 pages, 2236 KiB  
Article
Screening for Changes on Iris germanica L. Rhizomes Following Inoculation with Arbuscular Mycorrhiza Using Fourier Transform Infrared Spectroscopy
by Ioana Crișan, Roxana Vidican, Loredana Olar, Vlad Stoian, Adriana Morea and Răzvan Ștefan
Agronomy 2019, 9(12), 815; https://doi.org/10.3390/agronomy9120815 - 28 Nov 2019
Cited by 16 | Viewed by 5114
Abstract
Iris germanica L. is an ornamental and medicinal plant used since ancient times for their rhizomes, still utilized today to obtain orris butter highly valued in perfumery. Iris germanica presents special root adaptations, which confers certain tolerance to water and salt stress, making [...] Read more.
Iris germanica L. is an ornamental and medicinal plant used since ancient times for their rhizomes, still utilized today to obtain orris butter highly valued in perfumery. Iris germanica presents special root adaptations, which confers certain tolerance to water and salt stress, making it a good option in the context of the current climate trend. Aim of this study was to prospect the potential for biofortification of rhizomes using commercial arbuscular mycorrhizae (AM) application in field conditions for six Iris germanica cultivars. Plants presented Paris-type AM colonization. Rhizome samples collected after nine months from treatment and maturated, presented FT-IR (fourier transform infrared spectroscopy) spectra variation between experimental variants. Presence of the main metabolites in rhizome could be confirmed based on literature. Screening focused on two rhizome quality markers: carbohydrates, which influence plant development, and fatty acids, which are extractable from rhizome. Results suggest potential to enhance their accumulation in certain cultivars, such as ‘Pinafore Pink’ following AM application. Full article
(This article belongs to the Special Issue Contribution of Arbuscular Mycorrhizal Symbiosis to Crop Growth)
Show Figures

Figure 1

12 pages, 354 KiB  
Article
New Constituents from the Rhizomes of Egyptian Iris germanica L.
by Sabrin R. M. Ibrahim, Gamal A. Mohamed and Nawal M. Al-Musayeib
Molecules 2012, 17(3), 2587-2598; https://doi.org/10.3390/molecules17032587 - 2 Mar 2012
Cited by 77 | Viewed by 8364
Abstract
Chemical investigation of the methanolic extract of the rhizomes of Iris germanica L. (Iridaceae) afforded two new compounds; irigenin S (7) and iriside A (12), together with ten known compounds: stigmasterol (1), a-irone (2), γ-irone [...] Read more.
Chemical investigation of the methanolic extract of the rhizomes of Iris germanica L. (Iridaceae) afforded two new compounds; irigenin S (7) and iriside A (12), together with ten known compounds: stigmasterol (1), a-irone (2), γ-irone (3), 3-hydroxy-5-methoxyacetophenone (4), irilone (5), irisolidone (6), irigenin (8), stigmasterol-3-O-β-D-glucopyranoside (9), irilone 4'-O-b-D-glucopyranoside (10) and iridin (11). Their structures were established by UV, IR, 1D (1H and 13C) and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, in addition to mass spectroscopic data and comparison with literature data. The methanolic extract was evaluated for its antimicrobial activity. Both the methanolic extract and the isolated flavonoids were tested for their anti-inflammatory activity. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop