Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Hippuryl-histidyl-leucine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3511 KiB  
Article
Formulation and Process Optimization of Rauvolfia serpentina Nanosuspension by HPMC and In Vitro Evaluation of ACE Inhibitory Potential
by Syeeda Iram Touqeer, Nazish Jahan, Naseem Abbas and Ahsan Ali
J. Funct. Biomater. 2022, 13(4), 268; https://doi.org/10.3390/jfb13040268 - 30 Nov 2022
Cited by 12 | Viewed by 3892
Abstract
Angiotensin converting enzyme (ACE) overactivation is one of the primary causes of hypertension, which leads to cardiovascular disorders all over the world. In the scientific world, nanosuspension is a novel area of study that could offer an alternative treatment for active pharmaceuticals that [...] Read more.
Angiotensin converting enzyme (ACE) overactivation is one of the primary causes of hypertension, which leads to cardiovascular disorders all over the world. In the scientific world, nanosuspension is a novel area of study that could offer an alternative treatment for active pharmaceuticals that are not well soluble in water. Since active compounds’ bioavailability is reduced by their poor solubility, there are eventually fewer applications. Drug solubility, dissolving rate, and bioavailability are improved by nanosuspension, which shrinks medication particle size into the nanoscale range and boosts the surface area to volume ratio of the drug. There is a need to prepare Rauvolfia serpentina’s nanosuspension in order to get around some of the major challenges that it faces because of its poor solubility and wide range of biological activities. Using the antisolvent precipitation approach, a nanosuspension of Rauvolfia serpentina was created with hydroxy propyl methyl cellulose (HPMC). Rouvolfia serpentina nanosuspensions were prepared using a design of expert (DOE) approach, which allowed for the evaluation of key process parameters. To get an optimal sample, the effects of stabilizer concentration and anti-solvent volume on particle size, zeta potential, and PdI using CCD-RSM were investigated. Using the substrate Hippuryl-histidyl-leucine, the in vitro ACE inhibitory potential was assessed. On human erythrocytes, the safety of nanosuspension was evaluated in vitro. The ideal value of independent variables was discovered to be 0.25% w/v in order to achieve the desired response. Using scanning electron microscopy, the morphology of optimized nanosuspension was discovered to be rod-shaped (SEM). Compared to nanoformulation, crude extract had higher ACE inhibitory potential (83.11%). Human erythrocytes were found to be unaffected by nano-sized particles. Full article
(This article belongs to the Special Issue Biocompatibility of Functional Biomaterials)
Show Figures

Figure 1

8 pages, 1415 KiB  
Article
(+)-Catechin Stereoisomer and Gallate Induce Oxidative Stress in Rat Aorta
by Tamara V. Samokhvalova, Yuri A. Kim, Antonia F. Korystova, Ludmila N. Kublik, Vera V. Shaposhnikova and Yuri N. Korystov
Molecules 2022, 27(11), 3379; https://doi.org/10.3390/molecules27113379 - 24 May 2022
Cited by 1 | Viewed by 1912
Abstract
The goal of the work was to study changes in the activity of the angiotensin-converting enzyme (ACE) and production of reactive oxygen species (ROS) in the aorta of rats after the intraperitoneal injection of stereoisomers of catechin and gallate. The activity of ACE [...] Read more.
The goal of the work was to study changes in the activity of the angiotensin-converting enzyme (ACE) and production of reactive oxygen species (ROS) in the aorta of rats after the intraperitoneal injection of stereoisomers of catechin and gallate. The activity of ACE in the aorta sections was determined by measuring the hydrolysis of hippuryl-l-histidyl-l-leucine. The production of ROS in the aorta sections was estimated from the oxidation of dichlorodihydrofluorescein. The time and dose dependences of the effect of catechin stereoisomers and gallate on ACE activity and ROS production in the aorta were studied. It was shown that (+)-catechin and gallate increased the ACE activity and ROS production, and (−)-catechin and (−)-epicatechin did not influence these parameters. The doses of (+)-catechin and gallate that increased the ACE activity to a half-maximal value (AD50) were 0.04 and 0.03 µg/kg, respectively. Fucoidin, a blocker of leukocyte adhesion to the endothelium, reduced the ACE activity to the control level in the aortas of (+)-catechin-treated rats. Full article
(This article belongs to the Special Issue Natural Compounds for Disease and Health)
Show Figures

Figure 1

11 pages, 30025 KiB  
Article
Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory Mechanism
by Cong Wang, Maolin Tu, Di Wu, Hui Chen, Cheng Chen, Zhenyu Wang and Lianzhou Jiang
Int. J. Mol. Sci. 2018, 19(4), 1156; https://doi.org/10.3390/ijms19041156 - 11 Apr 2018
Cited by 62 | Viewed by 7155
Abstract
In the present study, a novel angiotensin I-converting enzyme inhibitory (ACE inhibitory) peptide, EPNGLLLPQY, derived from walnut seed storage protein, fragment residues 80–89, was identified by ultra-high performance liquid chromatography electrospray ionization quadrupole time of flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) from walnut protein hydrolysate. [...] Read more.
In the present study, a novel angiotensin I-converting enzyme inhibitory (ACE inhibitory) peptide, EPNGLLLPQY, derived from walnut seed storage protein, fragment residues 80–89, was identified by ultra-high performance liquid chromatography electrospray ionization quadrupole time of flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) from walnut protein hydrolysate. The IC50 value of the peptide was 233.178 μM, which was determined by the high performance liquid chromatography method by measuring the amount of hippuric acid (HA) generated from the ACE decomposition substrate (hippuryl-l-histidyl-l-leucine (HHL) to assess the ACE activity. Enzyme inhibitory kinetics of the peptide against ACE were also conducted, by which the inhibitory mechanism of ACE-inhibitory peptide was confirmed. Moreover, molecular docking was simulated by Discovery Studio 2017 R2 software to provide the potential mechanisms underlying the ACE-inhibitory activity of EPNGLLLPQY. Full article
Show Figures

Graphical abstract

10 pages, 1521 KiB  
Article
Identification, In Vitro Testing and Molecular Docking Studies of Microginins’ Mechanism of Angiotensin-Converting Enzyme Inhibition
by Fernanda C. R. Paiva, Glaucio Monteiro Ferreira, Gustavo H. G. Trossini and Ernani Pinto
Molecules 2017, 22(12), 1884; https://doi.org/10.3390/molecules22121884 - 5 Dec 2017
Cited by 15 | Viewed by 5216
Abstract
Cyanobacteria are able to produce a wide range of secondary metabolites, including toxins and protease inhibitors, with diverse biological activities. Microginins are small linear peptides biosynthesized by cyanobacteria species that act against proteases. The aim of this study was to isolate and identify [...] Read more.
Cyanobacteria are able to produce a wide range of secondary metabolites, including toxins and protease inhibitors, with diverse biological activities. Microginins are small linear peptides biosynthesized by cyanobacteria species that act against proteases. The aim of this study was to isolate and identify microginins produced by the LTPNA08 strain of Microcystis aeruginosa, as well as to verify their potential to inhibit angiotensin-converting enzyme (ACE; EC. 3.4.15.1) using in vitro and in silico methods. The fractionation of cyanobacterial extracts was performed by liquid chromatography and the presence of microginins was monitored by both LC-MS and an ACE inhibition assay. Enzyme inhibition was assayed by ACE with hippuryl-histidyl-leucine as the substrate; monitoring of hippuric acid was performed by HPLC-DAD. Isolated microginins were confirmed by mass spectrometry and were used to carry out the enzymatic assay. Molecular docking was used to evaluate microginin 770 (MG 770) and captopril (positive control), in order to predict similar binding interactions and determine the inhibitory action of ACE. The enzyme assay confirmed that MG 770 can efficiently inhibit ACE, with an IC50 equivalent to other microginins. MG 770 presented with comparable interactions with ACE, having features in common with commercial inhibitors such as captopril and enalaprilate, which are frequently used in the treatment of hypertension in humans. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 3547 KiB  
Article
Flavonoids-Rich Orthosiphon stamineus Extract as New Candidate for Angiotensin I-Converting Enzyme Inhibition: A Molecular Docking Study
by Armaghan Shafaei, Md Shamsuddin Sultan Khan, Abdalrahim F. A. Aisha, Amin Malik Shah Abdul Majid, Mohammad Razak Hamdan, Mohd Nizam Mordi and Zhari Ismail
Molecules 2016, 21(11), 1500; https://doi.org/10.3390/molecules21111500 - 9 Nov 2016
Cited by 27 | Viewed by 8918
Abstract
This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3′-hydroxy-5,6,7,4′-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action [...] Read more.
This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3′-hydroxy-5,6,7,4′-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action based on structure–activity relationships and molecular docking. The in vitro ACE inhibition activity relied on determining hippuric acid (HA) formation from ACE-specific substrate (hippuryl-histidyl-leucine (HHL)) by the action of ACE enzyme. A High Performance Liquid Chromatography method combined with UV detection was developed and validated for measurement the concentration of produced HA. The chelation ability of OS extract and its reference compounds was evaluated by tetramethylmurexide reagent. Furthermore, molecular docking study was performed by LeadIT-FlexX: BioSolveIT’s LeadIT program. OS ethanolic extract (OS-E) exhibited highest inhibition and lowest IC50 value (45.77 ± 1.17 µg/mL) against ACE compared to the other extracts. Among the tested reference compounds, EUP with IC50 15.35 ± 4.49 µg/mL had highest inhibition against ACE and binding ability with Zn (II) (56.03% ± 1.26%) compared to RA, TMF and SIN. Molecular docking studies also confirmed that flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. In this study, we have demonstrated that changes in flavonoids active core affect their capacity to inhibit ACE. Moreover, we showed that ACE inhibition activity of flavonoids compounds is directly related to their ability to bind with zinc ion in the active site of ACE enzyme. It was also revealed that OS extract contained high amount of flavonoids other than RA, TMF, SIN and EUP. As such, application of OS extract is useful as inhibitors of ACE. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Show Figures

Figure 1

10 pages, 604 KiB  
Article
In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of a Curcumin Nanoemulsion
by Heni RACHMAWATI, Irene Surya SORAYA, Neng Fisheri KURNIATI and Annisa RAHMA
Sci. Pharm. 2016, 84(1), 131-140; https://doi.org/10.3797/scipharm.ISP.2015.05 - 14 Feb 2016
Cited by 42 | Viewed by 4926
Abstract
Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated [...] Read more.
Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hyper-cholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self-nanoemulsifying carrier, it slightly increased the inhibitory effect on ACE. In contrast, the effect of curcumin in reducing cholesterol based on the HMGR assay was more pronounced. Curcumin encapsulated in a nanoemulsion showed significant cholesterol-lowering activity compared to a standard drug, pravastatin. Therefore, we conclude that curcumin does not show ACE inhibitory effects, but has potential use as an alternative therapeutic compound to treat hyperlipidaemia. Curcumin encapsulated in a nanoemulsion increased not only the HMGR inhibition, but also ACE inhibition of curcumin. These effects are suggested to be the result of improved solubility in the nanoemulsion system. Full article
Back to TopTop