Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = Hippo kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3619 KiB  
Article
Crebanine Induces Cell Death and Alters the Mitotic Process in Renal Cell Carcinoma In Vitro
by Hung-Jen Shih, Hsuan-Chih Hsu, Chien-Te Liu, Ya-Chuan Chang, Chia-Ying Yu and Wen-Wei Sung
Int. J. Mol. Sci. 2025, 26(14), 6896; https://doi.org/10.3390/ijms26146896 - 18 Jul 2025
Viewed by 360
Abstract
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, [...] Read more.
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, a thorough investigation of the role of crebanine in RCC has not been conducted thus far. For this study, we evaluated tumor cell viability, clonogenicity, cell-cycle distributions, morphological changes, and cell mortality with the aim of exploring the antitumor effects of crebanine in RCC. Furthermore, we compared gene and protein expressions using RNA sequencing analysis and Western blotting. The findings indicated that crebanine significantly inhibited RCC colonies and caused G1-phase cell-cycle arrest with sub-G1-phase accumulation, thus leading to suppressed cell proliferation and cell death. In addition, Hoechst 33342 staining was used to observe apoptotic cells, which revealed chromatin condensation and a reduction in the nuclear volume associated with apoptosis. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that differentially expressed genes are involved in the initiation of DNA replication, centrosome duplication, chromosome congression, and mitotic processes in the cell cycle along with signaling pathways, such as I-kappaB kinase/NF-kappaB signaling, Hippo signaling, and intrinsic apoptotic pathways. Consistent with GO and KEGG analyses, increased levels of cleaved caspase-3, cleaved caspase-7, and cleaved PARP, and decreased levels of cIAP1, BCL2, survivin, and claspin were observed. Finally, the expressions of G1/S phase transition cyclin D1, cyclin E/CDK2, and cyclin A2/CDK2 complexes were downregulated. Overall, these findings supported the potential of crebanine as an adjuvant therapy in RCC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 5004 KiB  
Article
Maresin1 Alleviates Ischemia Reperfusion Injury After Lung Transplantation by Inhibiting Ferroptosis via the PKA-Hippo-YAP Signaling Pathway
by Peng Deng, You Wu, Li Wan, Xiangfu Sun and Quanchao Sun
Biomedicines 2025, 13(7), 1594; https://doi.org/10.3390/biomedicines13071594 - 30 Jun 2025
Viewed by 424
Abstract
Background: Lung ischemia reperfusion injury (LIRI) is a severe complication after lung transplantation (LT). Ferroptosis contributes to the pathogenesis of LIRI. Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator that exerts protective effects against multiorgan diseases. However, the role and mechanism of [...] Read more.
Background: Lung ischemia reperfusion injury (LIRI) is a severe complication after lung transplantation (LT). Ferroptosis contributes to the pathogenesis of LIRI. Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator that exerts protective effects against multiorgan diseases. However, the role and mechanism of MaR1 in the ferroptosis of LIRI after LT need to be further investigated. Methods: A mouse LT model and a pulmonary vascular endothelial cell line after hypoxia reoxygenation (H/R) culture were established in our study. Histological morphology and inflammatory cytokine levels predicted the severity of LIRI. Cell viability and cell injury were determined by CCK-8 and LDH assays. Ferroptosis biomarkers, including Fe2+, MDA, 4-HNE, and GSH, were assessed by relevant assay kits. Transferrin receptor (TFRC) and Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) protein levels were examined by western blotting. In vitro, lipid peroxide levels were detected by DCFH-DA staining and flow cytometry analysis. The ultrastructure of mitochondria was imaged using transmission electron microscopy. Furthermore, the potential mechanism by which MaR1 regulates ferroptosis was explored and verified with signaling pathway inhibitors using Western blotting. Results: MaR1 protected mice from LIRI after LTx, which was reversed by the ferroptosis agonist Sorafenib in vivo. MaR1 administration decreased Fe2+, MDA, 4-HNE, TFRC, and ACSL4 contents, increased GSH levels, and ameliorated mitochondrial ultrastructural injury after LTx. In vitro, Sorafenib resulted in lower cell viability and worsened cell injury and enhanced the hallmarks of ferroptosis after H/R culture, which was rescued by MaR1 treatment. Mechanistically, the protein kinase A and YAP inhibitors partly blocked the effects of MaR1 on ferroptosis inhibition and LIRI protection. Conclusions: This study revealed that MaR1 alleviates LIRI and represses ischemia reperfusion-induced ferroptosis via the PKA-Hippo-YAP signaling pathway, which may offer a promising theoretical basis for the clinical application of organ protection after LTx. Full article
(This article belongs to the Special Issue The Role of Iron in Human Diseases)
Show Figures

Figure 1

16 pages, 2213 KiB  
Article
XMU-MP-1, Inhibitor of STE20-like MST1/2 Kinases of the Hippo Signaling Pathway, Suppresses the Cell Cycle, Activates Apoptosis and Autophagy, and Induces Death of Hematopoietic Tumor Cells
by Alexander G. Stepchenko, Sofia G. Georgieva and Elizaveta V. Pankratova
Pharmaceuticals 2025, 18(6), 874; https://doi.org/10.3390/ph18060874 - 12 Jun 2025
Viewed by 583
Abstract
Background/Objectives: Currently, there is limited knowledge on the molecular mechanisms of the “non-canonical” Hippo signaling pathway in hematopoietic tumor cells. We have shown that targeting the MST1/2 kinases, which are the key molecules in this signaling pathway, may be an effective approach [...] Read more.
Background/Objectives: Currently, there is limited knowledge on the molecular mechanisms of the “non-canonical” Hippo signaling pathway in hematopoietic tumor cells. We have shown that targeting the MST1/2 kinases, which are the key molecules in this signaling pathway, may be an effective approach to the treatment of hematologic tumors. Methods: The methods used in this study include cell growth assays, caspase assays, Western blot hybridizations, flow cytometry, and whole-transcriptome analyses. These methods allowed us to better understand the molecular pathways at play. Results: Our results showed that XMU-MP-1, an inhibitor of MST1/2 kinase, specifically reduces the viability of hematopoietic cancer cells but not breast cancer cells. It effectively inhibits the growth of the tumor B- and T-cell lines by blocking cell cycle progression, mainly during the G2/M phase, inducing apoptosis and autophagy. XMU-MP-1 treatment led to increased caspase 3/7 activity and increased levels of the cleaved PARP protein. Levels of the LC3-II protein were also shown to be increased, while the level of p62 decreased. These changes are associated with apoptosis and autophagy, respectively. RNA-seq analysis has demonstrated that XMU-MP-1 suppressed the expression of cell cycle regulators, such as E2F, and cell division cycle genes CDC6,7,20,25,45; cyclins A2,B1,B2, and cyclin-dependent kinases. At the same time, it increased the expression of genes involved in apoptosis, autophagy, and necroptosis. Conclusions: Combinations of growth assays, caspase assays, Western blotting, and RNA-seq have shown that the dramatic reduction in the number of hematopoietic tumor cells after treatment with XMU-MP-1 is due to both cytostatic and cytotoxic effects. The use of MST1/2 kinase inhibitors could be highly promising for complex therapy of hematological tumors. Full article
(This article belongs to the Special Issue Advances in the Treatment of Leukemia and Lymphomas)
Show Figures

Figure 1

31 pages, 1713 KiB  
Review
Aquatic Organisms in Response to Salinity Stress: Ecological Impacts, Adaptive Mechanisms, and Resilience Strategies
by Tariq Dildar, Wenxiao Cui, Mhd Ikhwanuddin and Hongyu Ma
Biology 2025, 14(6), 667; https://doi.org/10.3390/biology14060667 - 9 Jun 2025
Cited by 1 | Viewed by 1233
Abstract
Salinity stress presents a major ecological challenge for aquatic organisms, particularly in environments where salinity levels fluctuate. These fluctuations are becoming more pronounced due to climate change, further destabilizing aquatic ecosystems. Understanding how organisms adapt to such variability is essential for biodiversity conservation [...] Read more.
Salinity stress presents a major ecological challenge for aquatic organisms, particularly in environments where salinity levels fluctuate. These fluctuations are becoming more pronounced due to climate change, further destabilizing aquatic ecosystems. Understanding how organisms adapt to such variability is essential for biodiversity conservation and the sustainable management of aquatic resources. This review examines the physiological, molecular, and behavioral adaptations that enable aquatic organisms to survive and thrive under salinity stress. Specifically, it explores mechanisms of osmotic regulation, ion transport, and oxidative stress responses, highlighting key signaling pathways—such as AMP-activated protein kinase (AMPK), Phosphatidylinositol 3-kinase–protein kinase (PI3K-AKT), Mitogen-activated protein kinase (MAPK), and the Hippo pathway—that facilitate these adaptive processes. The review also emphasizes the genetic and epigenetic modifications that contribute to resilience, underscoring the importance of genetic diversity for species survival in fluctuating salinity conditions. Furthermore, the interactions between host organisms and their microbiomes are discussed as critical factors influencing resilience. The review addresses the impact of salinity fluctuations on species distribution and biodiversity, with a focus on the implications of climate change for aquatic ecosystems. Finally, strategies for mitigating salinity stress, such as nutritional interventions and the development of salinity-resistant varieties, are explored, particularly in aquaculture. Overall, this review consolidates current knowledge on organismal adaptations, molecular mechanisms, and environmental challenges, offering valuable insights for ecological research and aquaculture practices in the face of climate change. Full article
Show Figures

Graphical abstract

45 pages, 15819 KiB  
Review
The Molecular Basis of Pediatric Brain Tumors: A Review with Clinical Implications
by Elias Antoniades, Nikolaos Keffes, Stamatia Vorri, Vassilios Tsitouras, Nikolaos Gkantsinikoudis, Parmenion Tsitsopoulos and John Magras
Cancers 2025, 17(9), 1566; https://doi.org/10.3390/cancers17091566 - 4 May 2025
Viewed by 2061
Abstract
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved [...] Read more.
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved in tumorigenesis of low-grade gliomas. High-grade gliomas may carry similar mutations, but loss of epigenetic control is the dominant molecular event; it can occur either due to histone mutations or inappropriate binding or unbinding of DNA on histones. Therefore, despite the absence of genetic alteration in the classic oncogenes or tumor suppressor genes, uncontrolled transcription results in tumorigenesis. Isocitric dehydrogenase (IDH) mutations do not predominate compared to their adult counterpart. Embryonic tumors include medulloblastomas, which bear mutations of transcription-regulating pathways, such as wingless-related integration sites or sonic hedgehog pathways. They may also relate to high expression of Myc family genes. Atypical teratoid rhabdoid tumors harbor alterations of molecules that contribute to ATP hydrolysis of chromatin. Embryonic tumors with multilayered rosettes are associated with microRNA mutations and impaired translation. Ependymomas exhibit great variability. As far as supratentorial lesions are concerned, the major events are mutations either of NFkB or Hippo pathways. Posterior fossa tumors are further divided into two types with different prognoses. Type A group is associated with mutations of DNA damage repair molecules. Lastly, germ cell tumors are a heterogeneous group. Among them, germinomas manifest KIT receptor mutations, a subgroup of the tyrosine kinase receptor family. Full article
(This article belongs to the Special Issue New Advances in the Treatment of Pediatric Solid Tumors)
Show Figures

Figure 1

17 pages, 1590 KiB  
Review
Molecular Mechanisms of Tumor Progression and Novel Therapeutic and Diagnostic Strategies in Mesothelioma
by Taketo Kato, Ichidai Tanaka, Heng Huang, Shoji Okado, Yoshito Imamura, Yuji Nomata, Hirofumi Takenaka, Hiroki Watanabe, Yuta Kawasumi, Keita Nakanishi, Yuka Kadomatsu, Harushi Ueno, Shota Nakamura, Tetsuya Mizuno and Toyofumi Fengshi Chen-Yoshikawa
Int. J. Mol. Sci. 2025, 26(9), 4299; https://doi.org/10.3390/ijms26094299 - 1 May 2025
Cited by 1 | Viewed by 1205
Abstract
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway [...] Read more.
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway and histone methylation, thereby promoting tumor growth. NF2 mutations result in Merlin deficiency, leading to uncontrolled cell proliferation, whereas BAP1 mutations impair chromatin remodeling and hinder DNA damage repair. Emerging molecular targets in mesothelioma include mesothelin (MSLN), oxytocin receptor (OXTR), protein arginine methyltransferase (PRMT5), and carbohydrate sulfotransferase 4 (CHST4). MSLN-based therapies, such as antibody–drug conjugates and immunotoxins, have shown efficacy in clinical trials. OXTR, upregulated in mesothelioma, is correlated with poor prognosis and represents a novel therapeutic target. PRMT5 inhibition is being explored in tumors with MTAP deletions, commonly co-occurring with CDKN2A loss. CHST4 expression is associated with improved prognosis, potentially influencing tumor immunity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in some cases; however, resistance mechanisms remain a challenge. Advances in multi-omics approaches have improved our understanding of mesothelioma pathogenesis. Future research will aim to identify novel therapeutic targets and personalized treatment strategies, particularly in the context of epigenetic therapy and combination immunotherapy. Full article
(This article belongs to the Special Issue Translational Oncology: From Molecular Basis to Therapy)
Show Figures

Figure 1

16 pages, 3429 KiB  
Article
Knockdown of BAP31 Suppresses Tumorigenesis and Stemness in Breast Cancer Cells via the Hippo Pathway
by Zhenzhen Hao, Bo Zhao, Fei An, Wanting Zhang, Xiaoshuang Zhu, Shihao Meng and Bing Wang
Int. J. Mol. Sci. 2025, 26(8), 3576; https://doi.org/10.3390/ijms26083576 - 10 Apr 2025
Viewed by 532
Abstract
The enhancement of stemness in cancer cells is correlated with the malignancy level in human cancers. B cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression; however, its specific role in breast cancer remains unclear. This study aimed to elucidate the [...] Read more.
The enhancement of stemness in cancer cells is correlated with the malignancy level in human cancers. B cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression; however, its specific role in breast cancer remains unclear. This study aimed to elucidate the biological function and molecular mechanisms of BAP31 in tumorigenesis and cancer stemness. Cancer stemness was assessed through tumor sphere formation and flow cytometry assays. Western blot analysis was employed to examine alterations in core stemness factors in BAP31 knockdown cell lines, in order to explore potential underlying mechanisms. Finally, we explored the role of BAP31 by developing xenograft models using nude mice in vivo. Our findings revealed that BAP31 expression was elevated in breast cancer cells, and its knockdown led to a decrease in both sphere formation and the CD44+CD24− population. Furthermore, the knockdown of BAP31 significantly diminished the expression of core stemness factors, such as Sox2 and c-Myc, in breast cancer cells in vitro. Consistently, the suppression of BAP31 markedly inhibited the tumorigenicity and stemness of breast cancer in vivo. The functional analysis further indicated that the knockdown of BAP31 diminishes stemness by activating the Hippo pathway kinase MST1 and inhibiting the transcription factor YAP. Notably, our study was the first to demonstrate that BAP31 interacts with PCMT1, a direct negative regulator of MST1 kinase. These findings identify BAP31 as a regulator of the Hippo pathway, highlighting its critical role in breast cancer tumorigenesis and stemness. Consequently, BAP31 emerges as a potential therapeutic target for this malignancy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 1277 KiB  
Review
A Systematic Review on the Molecular Mechanisms of Resveratrol in Protecting Against Osteoporosis
by Ahmad Nazrun Shuid, Nurul Alimah Abdul Nasir, Norasikin Ab Azis, Ahmad Naqib Shuid, Norhafiza Razali, Haryati Ahmad Hairi, Mohd Fairudz Mohd Miswan and Isa Naina Mohamed
Int. J. Mol. Sci. 2025, 26(7), 2893; https://doi.org/10.3390/ijms26072893 - 22 Mar 2025
Cited by 1 | Viewed by 1783
Abstract
Osteoporosis is a prevalent metabolic bone disorder characterized by decreased bone mineral density and increased fracture risk, particularly among aging populations. While conventional pharmacological treatments exist, they often have adverse effects, necessitating the search for alternative therapies. Resveratrol, a naturally occurring polyphenol, has [...] Read more.
Osteoporosis is a prevalent metabolic bone disorder characterized by decreased bone mineral density and increased fracture risk, particularly among aging populations. While conventional pharmacological treatments exist, they often have adverse effects, necessitating the search for alternative therapies. Resveratrol, a naturally occurring polyphenol, has gained significant attention for its potential osteoprotective properties through various molecular mechanisms. This systematic review aims to comprehensively analyze the molecular pathways through which resveratrol protects against osteoporosis. Using an advanced search strategy in the Scopus, PubMed, and Web of Science databases, we identified 513 potentially relevant articles. After title and abstract screening, followed by full-text review, 28 studies met the inclusion criteria. The selected studies comprised 14 in vitro studies, 8 mixed in vitro and in vivo studies, 6 in vivo studies, and 1 cross-sectional study in postmenopausal women. Our findings indicate that resveratrol exerts its osteoprotective effects by enhancing osteoblast differentiation through the activation of the Phosphoinositide 3-Kinase/Protein Kinase B (PI3K/Akt), Sirtuin 1 (SIRT1), AMP-Activated Protein Kinase (AMPK), and GATA Binding Protein 1 (GATA-1) pathways while simultaneously inhibiting osteoclastogenesis by suppressing Mitogen-Activated Protein Kinase (MAPK) and TNF Receptor-Associated Factor 6/Transforming Growth Factor-β-Activated Kinase 1 (TRAF6/TAK1). Additionally, resveratrol mitigates oxidative stress and inflammation-induced bone loss by activating the Hippo Signaling Pathway/Yes-Associated Protein (Hippo/YAP) and Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) pathways and suppressing Reactive Oxygen Species/Hypoxia-Inducible Factor-1 Alpha (ROS/HIF-1α) and NADPH Oxidase 4/Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (Nox4/NF-κB). Despite promising preclinical findings, the low bioavailability of resveratrol remains a significant challenge, highlighting the need for novel delivery strategies to improve its therapeutic potential. This review provides critical insights into the molecular mechanisms of resveratrol in bone health, supporting its potential as a natural alternative for osteoporosis prevention and treatment. Further clinical studies are required to validate its efficacy and establish optimal dosing strategies. Full article
Show Figures

Graphical abstract

20 pages, 769 KiB  
Review
Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies
by Qiang Chen, Jin Jin, Pian Li, Xiuping Wang and Qianyan Wang
Biomedicines 2025, 13(3), 759; https://doi.org/10.3390/biomedicines13030759 - 20 Mar 2025
Viewed by 867
Abstract
Gliomas are a type of highly heterogeneous and invasive central nervous system tumor. Traditional treatment methods have limited efficacy, and the prognosis for patients remains poor. Recent studies have revealed the crucial roles of several abnormal signaling pathways in the pathogenesis of gliomas, [...] Read more.
Gliomas are a type of highly heterogeneous and invasive central nervous system tumor. Traditional treatment methods have limited efficacy, and the prognosis for patients remains poor. Recent studies have revealed the crucial roles of several abnormal signaling pathways in the pathogenesis of gliomas, including the Receptor Tyrosine Kinase/Rat Sarcoma Virus Oncogene/Phosphatidylinositol-3-Kinase (RTK/RAS/PI3K) pathway, the Wingless-Related Integration Site/β-Catenin (Wnt/β-Catenin) pathway, the Hippo/YAP (Hippo/Yes-associated protein) pathway, and the Slit/Robo (Slit Guidance Ligands/Roundabout) signaling pathway. These pathways play extremely vital roles in tumor proliferation, invasion, and treatment resistance. This article comprehensively and systematically reviews the molecular mechanisms of these signaling pathways, deeply summarizing the research progress of various treatment strategies, including targeted inhibitors, gene therapy, and nanomedicine against them. Moreover, the combination of targeted therapy and personalized treatment regimens is expected to overcome the current treatment bottleneck and provide a more favorable survival prognosis for glioblastoma patients. Full article
Show Figures

Figure 1

36 pages, 3441 KiB  
Review
Mechanosignaling via Integrins: Pivotal Players in Liver Fibrosis Progression and Therapy
by Aigul Sharip and Jeannette Kunz
Cells 2025, 14(4), 266; https://doi.org/10.3390/cells14040266 - 12 Feb 2025
Viewed by 2623
Abstract
Liver fibrosis, a consequence of chronic liver injury, represents a major global health burden and is the leading cause of liver failure, morbidity, and mortality. The pathological hallmark of this condition is excessive extracellular matrix deposition, driven primarily by integrin-mediated mechanotransduction. Integrins, transmembrane [...] Read more.
Liver fibrosis, a consequence of chronic liver injury, represents a major global health burden and is the leading cause of liver failure, morbidity, and mortality. The pathological hallmark of this condition is excessive extracellular matrix deposition, driven primarily by integrin-mediated mechanotransduction. Integrins, transmembrane heterodimeric proteins that serve as primary ECM receptors, orchestrate complex mechanosignaling networks that regulate the activation, differentiation, and proliferation of hepatic stellate cells and other ECM-secreting myofibroblasts. These mechanical signals create self-reinforcing feedback loops that perpetuate the fibrotic response. Recent advances have provided insight into the roles of specific integrin subtypes in liver fibrosis and revealed their regulation of key downstream effectors—including transforming growth factor beta, focal adhesion kinase, RhoA/Rho-associated, coiled-coil containing protein kinase, and the mechanosensitive Hippo pathway. Understanding these mechanotransduction networks has opened new therapeutic possibilities through pharmacological manipulation of integrin-dependent signaling. Full article
Show Figures

Figure 1

23 pages, 1210 KiB  
Review
The Hippo Signaling Pathway Manipulates Cellular Senescence
by Chiharu Miyajima, Mai Nagasaka, Hiromasa Aoki, Kohki Toriuchi, Shogo Yamanaka, Sakura Hashiguchi, Daisuke Morishita, Mineyoshi Aoyama, Hidetoshi Hayashi and Yasumichi Inoue
Cells 2025, 14(1), 13; https://doi.org/10.3390/cells14010013 - 26 Dec 2024
Cited by 1 | Viewed by 2052
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant [...] Read more.
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation. Full article
(This article belongs to the Special Issue The Role of Cellular Senescence in Health, Disease, and Aging)
Show Figures

Figure 1

35 pages, 3440 KiB  
Review
Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1—A Many-Sided Element of Cell Physiology and Pathology
by Anna Kot, Dominika Koszewska, Błażej Ochman and Elżbieta Świętochowska
Curr. Issues Mol. Biol. 2024, 46(12), 13811-13845; https://doi.org/10.3390/cimb46120826 - 5 Dec 2024
Cited by 2 | Viewed by 2470
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of [...] Read more.
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer’s disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer 2025)
Show Figures

Figure 1

13 pages, 1415 KiB  
Review
The Hippo Signaling Pathway, Reactive Oxygen Species Production, and Oxidative Stress: A Two-Way Traffic Regulation
by Bella Amanda, Rangga Pragasta, Haris Cakrasana, Arifa Mustika, Zakiyatul Faizah and Delvac Oceandy
Cells 2024, 13(22), 1868; https://doi.org/10.3390/cells13221868 - 11 Nov 2024
Cited by 3 | Viewed by 2680
Abstract
The Hippo signaling pathway is recognized for its significant role in cell differentiation, proliferation, survival, and tissue regeneration. Recently, the Hippo signaling pathway was also found to be associated with oxidative stress and reactive oxygen species (ROS) regulation, which are important in the [...] Read more.
The Hippo signaling pathway is recognized for its significant role in cell differentiation, proliferation, survival, and tissue regeneration. Recently, the Hippo signaling pathway was also found to be associated with oxidative stress and reactive oxygen species (ROS) regulation, which are important in the regulation of cell survival. Studies indicate a correlation between components of the Hippo signaling pathway, including MST1, YAP, and TAZ, and the generation of ROS. On the other hand, ROS and oxidative stress can activate key components of the Hippo signaling pathway. For example, ROS production activates MST1, which subsequently phosphorylates FOXO3, leading to apoptotic cell death. ROS was also found to regulate YAP, in addition to MST1/2. Oxidative stress and ROS formation can impair lipids, proteins, and DNA, leading to many disorders, including aging, neurodegeneration, atherosclerosis, and diabetes. Consequently, understanding the interplay between the Hippo signaling pathway, ROS, and oxidative stress is crucial for developing future disease management strategies. This paper aimed to review the association between the Hippo signaling pathway, regulation of ROS production, and oxidative stress to provide beneficial information in understanding cell function and pathological processes. Full article
Show Figures

Figure 1

24 pages, 4793 KiB  
Article
Signaling Pathways in Clear Cell Renal Cell Carcinoma and Candidate Drugs Unveiled through Transcriptomic Network Analysis of Hub Genes
by Khyle S. Suratos, Marco A. Orda, Po-Wei Tsai and Lemmuel L. Tayo
Appl. Sci. 2024, 14(19), 8768; https://doi.org/10.3390/app14198768 - 28 Sep 2024
Viewed by 1865
Abstract
Clear cell renal cell carcinoma (ccRCC) is a type of kidney cancer. It advances quickly and often metastasizes, making the prognosis for patients challenging. This study used weighted gene co-expression network analysis (WGCNA) to study gene expression data of different stages of ccRCC [...] Read more.
Clear cell renal cell carcinoma (ccRCC) is a type of kidney cancer. It advances quickly and often metastasizes, making the prognosis for patients challenging. This study used weighted gene co-expression network analysis (WGCNA) to study gene expression data of different stages of ccRCC obtained in the GEO database. The analysis identified three significant highly preserved gene modules across the datasets: GSE53757, GSE22541, GSE66272, and GSE73731. Functional annotation and pathway enrichment analysis using DAVID revealed inflammatory pathways (e.g., NF-kB, Hippo, and HIF-1 pathways) that may drive ccRCC development and progression. The study also introduced the involvement of viral infections associated with the disease in the metabolic reprogramming of ccRCC. A drug repurposing analysis was also conducted to identify potential drug candidates for ccRCC using the upregulated and downregulated hub genes. The top candidates are ziprasidone (dopamine and serotonin receptor antagonist) and fentiazac (cyclooxygenase inhibitor). Other drug candidates were also obtained, such as phosphodiesterase/DNA methyltransferase/ATM kinase inhibitors, acetylcholine antagonists, and NAD precursors. Overall, the study’s findings suggest that identifying several genes and signaling pathways related to ccRCC may uncover new targets, biomarkers, and even drugs that can be repurposed, which can help develop new and effective treatments for the disease. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

13 pages, 2231 KiB  
Review
Emerging Role of Hippo-YAP (Yes-Associated Protein)/TAZ (Transcriptional Coactivator with PDZ-Binding Motif) Pathway Dysregulation in Renal Cell Carcinoma Progression
by Varsha Mondal, Paul J. Higgins and Rohan Samarakoon
Cancers 2024, 16(15), 2758; https://doi.org/10.3390/cancers16152758 - 3 Aug 2024
Cited by 4 | Viewed by 2341
Abstract
Although Hippo-YAP/TAZ pathway involvement has been extensively studied in the development of certain cancers, the involvement of this cascade in kidney cancer progression is not well-established and, therefore, will be the focus of this review. Renal cell carcinoma (RCC), the most prevalent kidney [...] Read more.
Although Hippo-YAP/TAZ pathway involvement has been extensively studied in the development of certain cancers, the involvement of this cascade in kidney cancer progression is not well-established and, therefore, will be the focus of this review. Renal cell carcinoma (RCC), the most prevalent kidney tumor subtype, has a poor prognosis and a high mortality rate. Core Hippo signaling inactivation (e.g., LATS kinases) leads to the nuclear translocation of YAP/TAZ where they bind to co-transcriptional factors such as TEAD promoting transcription of genes which initiates various fibrotic and neoplastic diseases. Loss of expression of LATS1/2 kinase and activation of YAP/TAZ correlates with poor survival in RCC patients. Renal-specific ablation of LATS1 in mice leads to the spontaneous development of several subtypes of RCC in a YAP/TAZ-dependent manner. Genetic and pharmacological inactivation of YAP/TAZ reverses the oncogenic potential in LATS1-deficient mice, highlighting the therapeutic benefit of network targeting in RCC. Here, we explore the unique upstream controls and downstream consequences of the Hippo-YAP/TAZ pathway deregulation in renal cancer. This review critically evaluates the current literature on the role of the Hippo pathway in RCC progression and highlights the recent scientific evidence designating YAP/TAZ as novel therapeutic targets against kidney cancer. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

Back to TopTop