Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Himalayan geothermal belt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 22036 KiB  
Article
Petrogenesis and Tectonic Significance of Miocene Volcanic Rocks in the Ahlatlı–İspir–Erzurum Region, Türkiye
by Mehmet Ali Ertürk and Cihan Yalçın
Minerals 2025, 15(5), 485; https://doi.org/10.3390/min15050485 - 6 May 2025
Viewed by 498
Abstract
The İspir–Ahlatlı region in northeastern Türkiye, situated within the Eastern Pontides, hosts significant Miocene trachy-andesite volcanic rock exposures. This work seeks to elucidate their petrographic, geochemical, and isotopic compositions to enhance comprehension of their genesis and tectonic significance. Geochemistry reveals a transitional affinity, [...] Read more.
The İspir–Ahlatlı region in northeastern Türkiye, situated within the Eastern Pontides, hosts significant Miocene trachy-andesite volcanic rock exposures. This work seeks to elucidate their petrographic, geochemical, and isotopic compositions to enhance comprehension of their genesis and tectonic significance. Geochemistry reveals a transitional affinity, an enrichment in large-ion lithophile elements (LILEs), and a decrease in high-field-strength elements (HFSEs), suggesting a subduction-modified mantle source. Geochemical variations and fractional crystallisation trends indicate that the parental magma underwent significant differentiation, likely involving the fractionation of amphibole, clinopyroxene, and plagioclase. As supported by recent thermal modelling studies, the presence of intermediate volcanic rocks without associated bimodal suites in the study area may reflect elevated geothermal gradients and lithospheric delamination during post-collisional extension. The signatures indicated that the trachy-andesites originated in a post-collisional extensional environment after the closing of the Neo-Tethys Ocean and the ensuing tectonic reconfiguration of the Eastern Pontides. The reported geochemical traits correspond with post-collisional volcanic phases documented in various sectors of the Alpine–Himalayan orogenic system, such as the Eastern Pontides, the Iranian Plateau, and the Himalayan Belt, reinforcing the notion of a subduction-influenced mantle source. These findings increase the comprehension of magma formation in post-collisional settings and offer novel insights into the geodynamic context of the area. This research improves the understanding of post-collisional volcanic systems, their petrogenetic evolution, and their role in regional tectonic processes. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 7815 KiB  
Article
Evaluation of Medium-Deep Geothermal Resources Based on Seismic Imaging Technology: A Case Study of the Midu Basin in Yunnan Province
by Jie Li, Xuebin Zhang, Chao Xu, Chuan Li, Hui Tan, Ziye Yu and Yunpeng Zhang
Energies 2024, 17(16), 3948; https://doi.org/10.3390/en17163948 - 9 Aug 2024
Cited by 1 | Viewed by 1398
Abstract
The effective utilization of medium-high temperature geothermal energy is pivotal in reducing carbon emissions and plays a crucial role in developing clean energy technologies. The MiDu geothermal field, situated in the southeastern region of Dali Prefecture, Yunnan Province, lies within the Mediterranean–Himalayan high-temperature [...] Read more.
The effective utilization of medium-high temperature geothermal energy is pivotal in reducing carbon emissions and plays a crucial role in developing clean energy technologies. The MiDu geothermal field, situated in the southeastern region of Dali Prefecture, Yunnan Province, lies within the Mediterranean–Himalayan high-temperature geothermal belt and is characterized by abundant geothermal resources. However, due to its considerable depth, exploration poses significant risks, resulting in a total utilization rate of less than 0.5% of the total reserves. This study employs natural seismic data to perform a tomographic analysis of the geothermal system in the Midu basin. By examining the P-wave velocity (Vp) and the velocity ratio of P-waves and S-waves (Vp/Vs) at various depths, the findings reveal that the basin comprises two distinct structural layers: the thrust basement of the Mesozoic and Paleozoic eras and the strike–slip extensional sedimentary layer of the Cenozoic era. A low-velocity anomaly in the central basin corresponds to the loose Cenozoic sedimentary layer. In contrast, high-velocity anomalies at the basin edges correlate with boundary faults and the Mesozoic–Paleozoic strata. Below a depth of 4 km, the Red River Fault and MiDu Fault continue to dominate the basin’s structure, whereas the influence of the Malipo Fault diminishes. The MiDu Fault exhibits higher thermal conductivity than the Yinjie Fault. It interfaces with multiple carbonate and basalt formations characterized by well-developed pores and fractures, making it a crucial conduit for water and a control point for geothermal storage. Consequently, the existence of medium-high temperature (>90 °C) geothermal resources for power generation should be concentrated around the Midu fault on the western side of the basin, while the Yinjie fault area is more favorable for advancements in heating and wellness. Full article
(This article belongs to the Special Issue Advances in Geothermal and Solar Energy Development and Utilization)
Show Figures

Figure 1

25 pages, 15562 KiB  
Review
Representative High-Temperature Hydrothermal Activities in the Himalaya Geothermal Belt (HGB): A Review and Future Perspectives
by Qing Li, Yanchun Hao, Chuanxin Liu, Jinhang Huang and Xingcheng Yuan
Water 2024, 16(10), 1378; https://doi.org/10.3390/w16101378 - 12 May 2024
Cited by 2 | Viewed by 2000
Abstract
Southern Tibet and western Yunnan are areas with an intensive distribution of high-temperature geothermal systems in China, as an important part of the Himalayan Geothermal Belt (HGB). In recent decades, China has conducted systematic research on high-temperature geothermal fields such as Yangbajing, Gudui, [...] Read more.
Southern Tibet and western Yunnan are areas with an intensive distribution of high-temperature geothermal systems in China, as an important part of the Himalayan Geothermal Belt (HGB). In recent decades, China has conducted systematic research on high-temperature geothermal fields such as Yangbajing, Gudui, and Rehai. However, a comprehensive understanding has not yet been formed. The objective of this study was to enhance comprehension of the high-temperature geothermal system in the HGB and to elucidate the hydrogeochemical characteristics of geothermal fluids. This will facilitate the subsequent sustainable development and exploitation of domestic high-temperature hydrothermal geothermal resources. To this end, this study analysed geothermal spring and borehole data from the Yangbajing, Gudui, and Rehai geothermal fields. Based on previous research results, the source, evolution, and reservoir temperature characteristics of geothermal fluids are compared and summarised. The main high-temperature geothermal water in the geothermal field is derived from the deep Cl-Na geothermal fluid. Yangbajing’s and Gudui’s geothermal waters are primarily recharged by snow-melt water, while Rehai’s geothermal water is mainly recharged by local meteoric water. The average mixing ratios of magmatic water in the Yangbajing, Gudui, and Rehai geothermal fields are 17%, 21%, and 22%, respectively. The Yangbajing and Gudui geothermal fields have a relatively closed geological environment, resulting in a stronger water–rock interaction compared to the Rehai geothermal field. As geothermal water rises, it mixes with shallow cold water infiltration. The mixing ratios of cold water in the Yangbajing, Gudui, and Rehai geothermal fields are 60–70%, 40–50%, and 20–40%, respectively. Based on the solute geothermometer calculations, the maximum geothermal reservoir temperatures for Yangbajing, Gudui, and Rehai are 237 °C, 266 °C, and 282 °C, respectively. This study summarises and compares the hydrogeochemical characteristics of three typical high-temperature geothermal fields. The findings provide an important theoretical basis for the development of high-temperature geothermal resources in the Himalayan Geothermal Belt. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

16 pages, 13609 KiB  
Article
Three-Dimensional Geological Modeling and Resource Estimation of Hot Dry Rock in the Gonghe Basin, Qinghai Province
by Guilin Zhu, Linyou Zhang, Zhihui Deng, Qingda Feng, Zhaoxuan Niu and Wenhao Xu
Energies 2023, 16(16), 5871; https://doi.org/10.3390/en16165871 - 8 Aug 2023
Cited by 2 | Viewed by 1722
Abstract
The Gonghe Basin, situated on the northeastern margin of the Qinghai–Tibet Plateau, is a strike-slip pull-apart basin that has garnered considerable attention for its abundant high-temperature geothermal resources. However, as it is located far from the Himalayan geothermal belt, research on the geothermal [...] Read more.
The Gonghe Basin, situated on the northeastern margin of the Qinghai–Tibet Plateau, is a strike-slip pull-apart basin that has garnered considerable attention for its abundant high-temperature geothermal resources. However, as it is located far from the Himalayan geothermal belt, research on the geothermal resources in the Gonghe Basin has mainly focused on the heat source mechanism, with less attention given to the distribution and resource potential of hot dry rock. In this project, a comprehensive approach combining geological surveys, geophysical exploration, geochemical investigations, and deep drilling was employed to analyze the stratigraphic structure and lithological composition of the Gonghe Basin, establish a basin-scale three-dimensional geological model, and identify the lithological composition and geological structures within the basin. The model revealed that the target reservoirs of hot dry rock in the Gonghe Basin exhibit a half-graben undulation pattern, with burial depths decreasing from west to east and reaching a maximum depth of around 7000 m. Furthermore, the distribution of the temperature field in the area was determined, and the influence of temperature on rock density and specific heat was investigated to infer the thermal properties of the deep reservoirs. The Qiabuqia region, situated in the central-eastern part of the basin, was identified as a highly favorable target area for hot dry rock exploration and development. The volume method was used to evaluate the potential of hot dry rock resources in the Gonghe Basin, which was estimated to be approximately 4.90 × 1022 J, equivalent to 1.67 × 1012 t of standard coal, at depths of up to 10 km. Full article
(This article belongs to the Special Issue The Status and Development Trend of Geothermal Resources)
Show Figures

Figure 1

16 pages, 4026 KiB  
Article
High Variation in Protist Diversity and Community Composition in Surface Sediment of Hot Springs in Himalayan Geothermal Belt, China
by Peng Zhang, Jie Xiong, Nanqian Qiao, Shuai Luo, Qing Yang, Xiaodong Li, Ruizhi An, Chuanqi Jiang, Wei Miao and Sang Ba
Microorganisms 2023, 11(3), 674; https://doi.org/10.3390/microorganisms11030674 - 7 Mar 2023
Cited by 4 | Viewed by 2755
Abstract
Hot springs are some of the most special environments on Earth. Many prokaryotic and eukaryotic microbes have been found to live in this environment. The Himalayan geothermal belt (HGB) has numerous hot springs spread across the area. Comprehensive research using molecular techniques to [...] Read more.
Hot springs are some of the most special environments on Earth. Many prokaryotic and eukaryotic microbes have been found to live in this environment. The Himalayan geothermal belt (HGB) has numerous hot springs spread across the area. Comprehensive research using molecular techniques to investigate eukaryotic microorganisms is still lacking; investigating the composition and diversity of eukaryotic microorganisms such as protists in the hot spring ecosystems will not only provide critical information on the adaptations of protists to extreme conditions, but could also give valuable contributions to the global knowledge of biogeographic diversity. In this study, we used high-throughput sequencing to illuminate the diversity and composition pattern of protist communities in 41 geothermal springs across the HGB on the Tibetan Plateau. A total of 1238 amplicon sequence variants (ASVs) of protists were identified in the hot springs of the HGB. In general, Cercozoa was the phylum with the highest richness, and Bacillariophyta was the phylum with the highest relative abundance in protists. Based on the occurrence of protist ASVs, most of them are rare. A high variation in protist diversity was found in the hot springs of the HGB. The high variation in protist diversity may be due to the different in environmental conditions of these hot springs. Temperature, salinity, and pH are the most important environmental factors that affect the protist communities in the surface sediments of the hot springs in the HGB. In summary, this study provides the first comprehensive study of the composition and diversity of protists in the hot springs of the HGB and facilitates our understanding of the adaptation of protists in these extreme habitats. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 7037 KiB  
Review
Microbial Diversity of Terrestrial Geothermal Springs in Armenia and Nagorno-Karabakh: A Review
by Ani Saghatelyan, Armine Margaryan, Hovik Panosyan and Nils-Kåre Birkeland
Microorganisms 2021, 9(7), 1473; https://doi.org/10.3390/microorganisms9071473 - 9 Jul 2021
Cited by 32 | Viewed by 5327
Abstract
The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude [...] Read more.
The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules. Full article
Show Figures

Figure 1

28 pages, 6981 KiB  
Article
Hydrogeochemical Characteristics and Genesis of Geothermal Water from the Ganzi Geothermal Field, Eastern Tibetan Plateau
by Yifan Fan, Zhonghe Pang, Dawei Liao, Jiao Tian, Yinlei Hao, Tianming Huang and Yiman Li
Water 2019, 11(8), 1631; https://doi.org/10.3390/w11081631 - 7 Aug 2019
Cited by 46 | Viewed by 6997
Abstract
The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to [...] Read more.
The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to determine the geochemical processes involved in the formation of the geothermal water. On the basis of δ18O and δD values, the geothermal waters originate from snow and glacier melt water. The water chemistry type is dominated by HCO3-Na, which is mainly derived from water-CO2-silicate interactions, as also indicated by the 87Sr/86Sr ratios (0.714098–0.716888). Based on Cl-enthalpy mixing model, the chloride concentration of the deep geothermal fluid is 37 mg/L, which is lower than that of the existing magmatic heat source area. The estimated reservoir temperature ranges from 180–210 °C. Carbon isotope data demonstrate that the CO2 mainly originates from marine limestone metamorphism, with a fraction of 74–86%. The helium isotope ratio is 0.17–0.39 Ra, indicating that the He mainly comes from atmospheric and crustal sources, and no more than 5% comes from a mantle source. According to this evidence, we propose that there is no magmatic heat source below the Ganzi geothermal field, making it a distinctive type of high-temperature geothermal system on the Tibetan Plateau. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop