Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = Hercynian

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6561 KiB  
Article
Overprinted Metamorphic Assemblages in High-Alumina Metapelitic Rocks in Contact with Varnous Pluton (NNW Greece)
by Foteini Aravani, Lambrini Papadopoulou, Antonios Koroneos, Alexandros Chatzipetros, Stefanos Karampelas and Kyriaki Pipera
Minerals 2025, 15(8), 823; https://doi.org/10.3390/min15080823 - 1 Aug 2025
Viewed by 182
Abstract
The Varnous Mt. area in the northern Pelagonian Nappe is characterized by the intrusion of an Early Permian pluton, with its tectonic setting and igneous petrology well constrained in earlier studies. The metamorphic basement rocks warrant further detailed investigation due to their complex [...] Read more.
The Varnous Mt. area in the northern Pelagonian Nappe is characterized by the intrusion of an Early Permian pluton, with its tectonic setting and igneous petrology well constrained in earlier studies. The metamorphic basement rocks warrant further detailed investigation due to their complex history. These rocks are polymetamorphosed, preserving a sequence of overprinting metamorphic and deformational events. The metapelitic rocks have undergone an initial, pre-Carboniferous regional metamorphism of unknown grade before or during Hercynian Orogeny, followed by a thermal metamorphic event associated with the intrusion of the Varnous pluton at 297 Ma. The assemblage attributed to this event is And + Crd + Bt + Ms (west), while the first assemblage identified at the eastern part is Sil + Bt + Gt. Additionally, three regional tectonometamorphic events occurred during the Alpine Orogeny. For the Alpine events, the assemblages are as follows: first, the development of St + Gt + Chl + Kfs + Pl + Qtz at 150–130 Ma; second, retrograde metamorphism of these assemblages with Cld + Gt + Ser + Mrg + Chl ± Sil (Fi) at 110–90 Ma; and finally, mylonitization of all previous assemblages at 90–70 Ma with simultaneous annealing and formation of Cld + Chl + Ms. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 28055 KiB  
Article
Sequence Stratigraphic and Geochemical Records of Paleo-Sea Level Changes in Upper Carboniferous Mixed Clastic–Carbonate Successions in the Eastern Qaidam Basin
by Yifan Li, Xiaojie Wei, Kui Liu and Kening Qi
J. Mar. Sci. Eng. 2025, 13(7), 1299; https://doi.org/10.3390/jmse13071299 - 2 Jul 2025
Viewed by 303
Abstract
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This [...] Read more.
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This tropical carbonate–clastic system offers critical constraints for correlating equatorial sea level responses with high-latitude glacial cycles during the Late Paleozoic Ice Age. Based on detailed outcrop observations and interpretations, five facies assemblages, including fluvial channel, tide-dominated estuary, wave-dominated shoreface, tide-influenced delta, and carbonate-dominated marine, have been identified and organized into cyclical stacking patterns. Correspondingly, four third-order sequences were recognized, each composed of lowstand, transgressive, and highstand system tracts (LST, TST, and HST). LST is generally dominated by fluvial channels as a result of river juvenation when the sea level falls. The TST is characterized by tide-dominated estuaries, followed by retrogradational, carbonated-dominated marine deposits formed during a period of sea level rise. The HST is dominated by aggradational marine deposits, wave-dominated shoreface environments, or tide-influenced deltas, caused by subsequent sea level falls and increased debris supply. The sequence stratigraphic evolution and geochemical records, based on carbon and oxygen isotopes and trace elements, suggest that during the Late Carboniferous period, the eastern Qaidam Basin experienced at least four significant sea level fluctuation events, and an overall long-term sea level rise. These were primarily driven by the Gondwana glacio-eustasy and regionally ascribed to the Paleo-Tethys Ocean expansion induced by the late Hercynian movement. Assessing the history of glacio-eustasy-driven sea level changes in the eastern Qaidam Basin is useful for predicting the distribution and evolution of mixed cyclic succession in and around the Tibetan Plateau. Full article
Show Figures

Figure 1

31 pages, 54013 KiB  
Article
Ore-Forming Fluid Evolution and Ore Genesis of the Cuyu Gold Deposit in Central Jilin Province, NE China: Constraints from Geology, Fluid Inclusions, and H–O–S–Pb Isotope Studies
by Haozhe Li, Qun Yang, Leigang Zhang, Yunsheng Ren, Mingtao Li, Chan Li, Bin Wang, Sitong Chen and Xiaolei Peng
Minerals 2025, 15(5), 535; https://doi.org/10.3390/min15050535 - 17 May 2025
Cited by 1 | Viewed by 599
Abstract
The Cuyu gold deposit in central Jilin Province in Northeast China is located in the eastern segment of the northern margin of the North China Craton (NCC), as well as the eastern segment of the Xing’an–Mongolian Orogenic Belt (XMOB). Gold ore-bodies are controlled [...] Read more.
The Cuyu gold deposit in central Jilin Province in Northeast China is located in the eastern segment of the northern margin of the North China Craton (NCC), as well as the eastern segment of the Xing’an–Mongolian Orogenic Belt (XMOB). Gold ore-bodies are controlled by NW-trending faults and mainly occur in late Hercynian granodiorite. The mineralization process in the Cuyu deposit can be divided into three stages: quartz + coarse grained arsenopyrite + pyrite (stage I), quartz + sericite + pyrite + arsenopyrite + electrum + chalcopyrite + sphalerite (stage II), and quartz + calcite ± pyrite (stage III). Stage II is the most important for gold mineralization. We conducted analyses including petrography, microthermometry, laser Raman spectroscopy of fluid inclusions, and H–O–S–Pb isotopic analysis to elucidate the mineralization processes in the Cuyu deposit. Five types of primary fluid inclusions (FIs) are present in the hydrothermal quartz and calcite grains of the ore: liquid-rich two-phase aqueous fluid inclusions (L-type), vapor-rich two-phase aqueous fluid inclusions (V-type), CO2-bearing two- or three-phase inclusions (C1-type), CO2-rich two- or three-phase inclusions (C2-type), and pure CO2 mono-phase inclusions (C3-type). From stages I to III, the fluid inclusion assemblages changed from L-, C2-, and C3-types to L-, V-, C1-, C2-, and C3-types and, finally, to L-types only. The corresponding homogenization temperatures for stages I to III were 242–326 °C, 202–298 °C, and 106–188 °C, and the salinities were 4.69–9.73, 1.63–7.30, and 1.39–3.53 wt.% NaCl equiv., respectively. The ore-forming fluid system evolved from a NaCl-H2O-CO2 ± CH4 ± H2S fluid system in stage I and II with immiscible characteristics to a homogeneous NaC-H2O fluid system in stage III. Microthermometric data for stages I to III show a decreasing trend in homogenization temperatures and salinities. The mineral assemblages, fluid inclusions, and H–O–S–Pb isotopes indicate that the initial ore-forming fluids of stage I were exsolved from diorite porphyrite and characterized by a high temperature and low salinity. The addition of meteoric water in large quantities led to decreases in temperature and pressure, resulting in a NaCl-H2O-CO2 ± CH4 ± H2S fluid system with significant immiscibility in stage II, facilitating the deposition of gold and associated polymetallic sulfides. The Cuyu gold deposit has a similar ore genesis to those of gold deposits in the Jiapigou–Haigou gold belt (JHGB) of southeastern Jilin Province indicating potential for gold prospecting in the northwest-trending seam of the JHGB. Full article
Show Figures

Figure 1

18 pages, 7968 KiB  
Article
Stages and Evolution of Strike-Slip Faults of the Ultra-Deep-Burial Ordovician Strata in Fuman Oilfield, Tarim Basin: Evidence from U-Pb Geochronology of Siliceous Minerals
by Chao Yao, Zhanfeng Qiao, Xiao Luo, Tianfu Zhang, Bing Li, Shaoying Chang, Zhenyu Zhang and Jiajun Chen
Minerals 2025, 15(3), 270; https://doi.org/10.3390/min15030270 - 6 Mar 2025
Viewed by 663
Abstract
Siliceous minerals with the property of resistance to diagenetic alteration precipitate during the migration of hydrothermal fluids through strike-slip faults and the interaction of these fluids with host rocks during fault activity. Based on petrological analyses and U-Pb dating of siliceous minerals, the [...] Read more.
Siliceous minerals with the property of resistance to diagenetic alteration precipitate during the migration of hydrothermal fluids through strike-slip faults and the interaction of these fluids with host rocks during fault activity. Based on petrological analyses and U-Pb dating of siliceous minerals, the stages of strike-slip faulting of the ultra-deep-burial Ordovician in the Fuman oilfield were subdivided and their evolutionary process was discussed in combination with seismic interpretation. The results reveal the following: (1) the strike-slip faults contain hydrothermal siliceous minerals, including cryptocrystalline silica, crystalline silica, and radial silica. (2) Based on the twelve U-Pb ages of siliceous minerals (ranging from 458 ± 78 Ma to 174 ± 35 Ma) and five U-Pb ages of calcite, the activity of the strike-slip faults was divided into six stages: the Middle Caledonian, Late Caledonian, Early Hercynian, Middle Hercynian, Late Hercynian, and Yanshanian, corresponding to twelve siliceous U-Pb ages ranging from 458 ± 78 Ma to 174 ± 35 Ma, and five calcitic U-Pb ages. The Late Caledonian and Early Hercynian were the main periods of strike-slip fault activity, while the Late Hercynian period marked the final period of the fault system. (3) Later-stage faults inherited and developed from pre-existing faults. Steep linear strike-slip faults formed during the Middle and Late Caledonian movements. During the Late Hercynian and Yanshanian movements, mid-shallow faults, branch faults, and shallow echelon faults developed on the foundation of these linear faults. The methods and results of this study can guide future hydrocarbon exploration in the Fuman oilfield and can be applied to areas with similar tectonic backgrounds. Full article
(This article belongs to the Special Issue Deformation, Diagenesis, and Reservoir in Fault Damage Zone)
Show Figures

Figure 1

15 pages, 17812 KiB  
Article
Hydrocarbon Accumulation and Overpressure Evolution of the Ordovician Carbonate Reservoirs in the Tahe Area, Tarim Basin, NW China
by Xinyi Jiang, Xiaowen Guo, Yingzhong Zhu, Tao Luo, Junlin Chen, Hao Xu and Xiaolin Zhao
Minerals 2024, 14(12), 1250; https://doi.org/10.3390/min14121250 - 9 Dec 2024
Viewed by 899
Abstract
The recovery of reservoir paleo-pressure has been a key focus in hydrocarbon accumulation research. The evolution of paleo-pressure in carbonate reservoir rocks has long been a research challenge for researchers. Using the Tahe area in the Tarim Basin as a case study, this [...] Read more.
The recovery of reservoir paleo-pressure has been a key focus in hydrocarbon accumulation research. The evolution of paleo-pressure in carbonate reservoir rocks has long been a research challenge for researchers. Using the Tahe area in the Tarim Basin as a case study, this paper proposes an idea for studying the paleo-pressure evolution in carbonate rocks through fluid inclusions. A series of methods, including cathodoluminescence, fluid inclusion petrography, laser in situ U–Pb isotope dating, and microthermometry, were employed to determine the stages of hydrocarbon accumulation. Additionally, the paleo-pressure of oil inclusions from different stages has been restored, and the pressure evolution of the Ordovician carbonate reservoirs in the Tahe area was reconstructed. The study identifies four stages of oil charging in Ordovician carbonate reservoirs. The four oil-charging events occurred during the Caledonian (459–450 Ma), Hercynian (320–311 Ma), late Indosinian (227–213 Ma), and Yanshanian (134–117 Ma) periods. The overpressure evolution indicates that the Cambrian source rocks reached the first oil generation peak and started to expel hydrocarbons during the late Caledonian period. Oil mainly migrated vertically along strike-slip faults and accumulated in fracture-cavity karst reservoirs. At the same time, the reservoir pressure increased rapidly. Subsequent tectonic compression caused uplift and erosion, leading to the destruction of the oil reservoirs and a decrease in pressure. During the Hercynian period, hydrocarbons migrated and accumulated in reservoirs, leading to an increase in reservoir pressure. Subsequently, a slight formation uplift occurred, which caused a decrease in pressure. During the late Indosinian period, the third stage of oil accumulation led to an increase in reservoir pressure. Tectonic uplift during the Yanshanian period caused reservoir destruction and adjustment, resulting in a decrease in pressure. Reservoir pressure increased with oil charging during the Yanshanian period. Subsequently, a large number of faults developed in the study area, causing further destruction and re-adjustment of the oil reservoirs, which led to a decrease in pressure to the current state of normal pressure or weak overpressure. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

4 pages, 177 KiB  
Editorial
Plant Taxonomy, Systematics and Phylogeography
by Jacek Urbaniak and Paweł Kwiatkowski
Plants 2024, 13(19), 2670; https://doi.org/10.3390/plants13192670 - 24 Sep 2024
Viewed by 1449
Abstract
Plant taxonomy and phylogeny deal with very important problems related to the genetic diversity of populations found in different geographical regions, trying to present the variability of these populations but also to explain their origin. For this reason, such studies examining the conditioned [...] Read more.
Plant taxonomy and phylogeny deal with very important problems related to the genetic diversity of populations found in different geographical regions, trying to present the variability of these populations but also to explain their origin. For this reason, such studies examining the conditioned diversity of plant populations were the subject of this Special Issue (SI) of the journal Plants. This SI contains ten original articles and one review article concerning phylogeography and related sciences, i.e., biogeography, taxonomy, and systematics, as well as the genetic variability that lies at the basis of these sciences. The articles included in the SI cover a wide range of topics, including the phylogeny and taxonomy of mosses, taxonomy and hybridization and phylogeny of the genus Chery, genetic diversity and phylogeography of fern, including relict species from the Macronesia area, taxonomy of the genus Aconitum, a species of orchid new to the Romanian flora, but also a proposal for a new phylogeographic division in Gansu Province (China) and a review of the role of the Hercynian Mountains in Shaping Plant Migration Patterns in the Pleistocene. Full article
(This article belongs to the Special Issue Plant Taxonomy, Systematics, and Phylogeography)
29 pages, 11996 KiB  
Article
Geodynamic Settings of Late Paleozoic–Early Mesozoic Granitoid Magmatism at the Arctic Continental Margins: Insights from New Geochronological and Geochemical Data from the Taimyr Peninsula
by Mikhail Yu. Kurapov, Dmitry L. Konopelko, Yuriy S. Biske, Vasiliy F. Proskurnin, Sergei V. Petrov, Maria A. Proskurnina, Yevgeny Yi. Berzon, Victoria B. Ershova, Stepan V. Berzin and Sergey Yu. Stepanov
Minerals 2024, 14(4), 423; https://doi.org/10.3390/min14040423 - 19 Apr 2024
Cited by 2 | Viewed by 1579
Abstract
Despite significant progress in Arctic geological studies, a number of principal questions concerning the Paleozoic collisional events remain unanswered. Therefore, the Taimyr Peninsula, representing the only outcropped high Arctic region where magmatic complexes, formed by Hercynian collision between the Siberian Craton and the [...] Read more.
Despite significant progress in Arctic geological studies, a number of principal questions concerning the Paleozoic collisional events remain unanswered. Therefore, the Taimyr Peninsula, representing the only outcropped high Arctic region where magmatic complexes, formed by Hercynian collision between the Siberian Craton and the Kara Block, are well exposed, is crucially important. In this paper we report new geochemical and geochronological data for intrusions in the poorly studied northeastern part of the Taimyr Peninsula. The obtained results in combination with published data show that supra-subduction magmatism at the southern active margin of the Kara Block continued from ca. 345 to 285 Ma (Early Carboniferous to Early Permian), and was followed by a post-collisional magmatic pulse that affected the whole Taimyr across terrane boundaries at ca. 280 Ma in the Early Permian. After cessation of the post-collisional magmatism at ca. 265 Ma, the Taimyr experienced extension, and voluminous magmatic series associated with a Siberian mantle plume were formed between 251 and 228 Ma during the Triassic. The studied post-collisional and plume-related intrusions of the Northeastern Taimyr are generally classified as evolved high-K I-type granites with adakitic affinity. The latter is a regional feature because the majority of the analyzed plume-related granitoids are geochemically similar to high potassium continental adakites. It is suggested that the adakitic geochemical characteristics of the plume-related granitoids resulted from melting of hydrated mafic lower crustal protoliths and were controlled by the source lithology. Comparison of the new results with data available for adjacent areas allows for correlation of terranes on a regional scale and sheds light on the evolution of the Arctic continental margins in general. In the Early–Middle Paleozoic, the Kara Block was part of a continental terrane that formed at the northern edge of Baltica as a result of Neoproterozoic Timanian orogeny. In the Early Carboniferous, the southern margin of Kara turned into an active margin, while its inferred continuation in the eastern Uralian margin of Baltica remained a passive margin until the Early Permian. This discrepancy can be explained by dextral displacement of Kara relative to Baltica that took place in the Early Carboniferous and was later accommodated by the formation of the Taimyr collisional belt in the course of the Early Permian collision between Kara and Siberia. After collision, the Taimyr was incorporated into the northern Eurasian margin as an uplifted block that experienced surface erosion and supplied clastic material in surrounding basins. Full article
Show Figures

Figure 1

22 pages, 21292 KiB  
Article
The Geotectonic Peculiarities of the North Caspian Permian Salt-Bearing Basins (Kazakhstan)
by Vyacheslav Zhemchuzhnikov, Aitbek Akhmetzhanov, Kenzhebek Ibrashev and Gauhar Akhmetzhanova
Geosciences 2024, 14(1), 23; https://doi.org/10.3390/geosciences14010023 - 16 Jan 2024
Cited by 3 | Viewed by 3417
Abstract
This article examines the geotectonic and sedimentary features of the Upper Devonian–Carboniferous–Permian deposits of the North Caspian basin, represented by deposits of marine Paleozoic-isolated carbonate platforms formed during the subsidence of the basement on the passive continental margin. The top is covered by [...] Read more.
This article examines the geotectonic and sedimentary features of the Upper Devonian–Carboniferous–Permian deposits of the North Caspian basin, represented by deposits of marine Paleozoic-isolated carbonate platforms formed during the subsidence of the basement on the passive continental margin. The top is covered by thick salt-bearing Kungurian deposits from the end of the Early Permian epoch. The formation of carbonate platforms is associated with a major tectonic restructuring of the basin at the turn of the Caledonian and Hercynian eras, when the Paleo-Tethys Ocean was formed and isolated carbonate islands began to grow in an open marine environment. The central part of the depression experienced a long and gradual subsidence that spanned the entire Paleozoic era and the beginning of the Mesozoic era. In the south and east, from the Devonian to the Permian periods, barriers were formed in the form of island carbonate massifs that separated the North Caspian basin from the Paleo-Tethys Ocean. During the formation of the salt-bearing basin, these barriers limited water exchange and ensured a one-way influx of sea water from the open ocean. As a result, at the end of the Permian period, thicker salts accumulated; however, during the collision of the continental massifs, an invasion of many kilometers of redbeds occurred. They initially stopped salt accumulation; however, gradually, in the north of the Caspian Sea during Roadian times, the salt accumulation continued. The post-Roadian time is associated with the influx of large quantities of redbed sediments, which caused gravitational instability in the underlying salt, and salt tectonics began with the formation of domal structures. Full article
Show Figures

Figure 1

19 pages, 4017 KiB  
Review
The Role of the Hercynian Mountains of Central Europe in Shaping Plant Migration Patterns in the Pleistocene—A Review
by Jacek Urbaniak and Paweł Kwiatkowski
Plants 2023, 12(18), 3317; https://doi.org/10.3390/plants12183317 - 20 Sep 2023
Cited by 2 | Viewed by 3176
Abstract
The climatic changes that took place in Europe during the Quaternary period influenced plant habitats as well as their species and vegetation composition. In this article, biogeographical studies on Hercynian mountain plants that include data for the Alps, Carpathians, and European lowlands are [...] Read more.
The climatic changes that took place in Europe during the Quaternary period influenced plant habitats as well as their species and vegetation composition. In this article, biogeographical studies on Hercynian mountain plants that include data for the Alps, Carpathians, and European lowlands are reviewed in order to discuss the phylogeographical structure and divergence of the Hercynian populations from those in other European mountain ranges, Scandinavia, and lowlands. The analyzed studies show specific phylogeographical relations between the Hercynian mountains, Alps, Scandinavia, Carpathians, and European lowlands. The results also indicate that the genetic patterns of plant populations in the Hercynian Mountains may differ significantly in terms of origin. The main migration routes of species to the Hercynian ranges began in the Alps or Carpathians. Some species, such as Rubus chamaemorus L., Salix lapponum L., and Salix herbacea L., are glacial relics that may have arrived and settled in the Hercynian Mountains during the Ice Age and that survived in isolated habitats. The Hercynian Mountains are composed of various smaller mountain ranges and are a crossroads of migration routes from different parts of Europe; thus, intensive hybridization has occurred between the plant populations therein, which is indicated by the presence of several divergent genetic lines. Full article
(This article belongs to the Special Issue Plant Taxonomy, Systematics, and Phylogeography)
Show Figures

Figure 1

15 pages, 9574 KiB  
Article
Fe–Cu Isotope Characteristics and Geological Significance of the Yushui Seafloor Massive Sulfide Deposit in the Late Paleozoic Marine Depression, Eastern Guangdong Province
by Yi Huang, Yan Wang, Zhongwei Wu, Xiaoming Sun, Fan Yang, Guiyong Shi, Yao Guan and Zhengxin Yin
Minerals 2023, 13(8), 1071; https://doi.org/10.3390/min13081071 - 12 Aug 2023
Cited by 1 | Viewed by 1549
Abstract
The Yong’an-Meixian Late Paleozoic Hercynian depression, located in western Fujian-eastern Guangdong, is an important metallogenic belt in China. The Yushui copper-polymetallic massive sulfide deposit from the middle part of the depression, with extremely high copper grades, has attracted considerable attention and research interest [...] Read more.
The Yong’an-Meixian Late Paleozoic Hercynian depression, located in western Fujian-eastern Guangdong, is an important metallogenic belt in China. The Yushui copper-polymetallic massive sulfide deposit from the middle part of the depression, with extremely high copper grades, has attracted considerable attention and research interest from geologists for years. In most previous research, the ore-forming material source and metallogenic process were inferred from indirect evidence (i.e., using H-O-C-S isotopic systematics as geochemical tracers). In this paper, the ore-forming process of the Yushui deposit has been studied directly by using nontraditional stable (Fe–Cu) isotopes for the first time, providing new evidence for the genesis of this deposit. The results show that there is a relatively negative Fe-Cu isotopic composition in the Yushui deposit, with δ56Fe values ranging from −0.519 to −1.063‰ and δ65Cu values ranging from −1.539 to −1.609‰, respectively. The fractionation of Fe isotopes is primarily attributed to hydrothermal leaching of the basement strata by ore-forming fluids, along with rapid precipitation of sulfides during the ore-forming process. On the other hand, the fractionation of Cu isotopes is probably controlled by the relatively low temperature of ore formation, sulfide precipitation and the involvement of organic matter in mineralization. Combining our findings with previous studies, the ore-forming materials of the Yushui deposit are likely derived from the basement ore-bearing strata (pre-Devonian strata) through leaching by hydrothermal fluids. Moreover, some of the ore bodies might have been locally overprinted by late-stage hydrothermal reworking and alteration. Full article
(This article belongs to the Special Issue Geology and Geochemistry of Marine Mineral Resources)
Show Figures

Figure 1

16 pages, 8542 KiB  
Article
Tectonic-Thermal Evolution of the Wadi El-Dahal Area, North Eastern Desert, Egypt: Constraints on the Suez Rift Development
by Sherif Mansour, Noriko Hasebe, Mohamed Zaki Khedr, Akihiro Tamura and Amer A. Shehata
Minerals 2023, 13(8), 1021; https://doi.org/10.3390/min13081021 - 30 Jul 2023
Cited by 14 | Viewed by 1790
Abstract
The Suez Rift developed as a northern extension of the Red Sea rift during the Oligocene-Miocene, whose flanks were constructed from the Neoproterozoic basement rocks of the Arabian–Nubian Shield. These basement rocks are comprised of the whole tectonic history since their formation. The [...] Read more.
The Suez Rift developed as a northern extension of the Red Sea rift during the Oligocene-Miocene, whose flanks were constructed from the Neoproterozoic basement rocks of the Arabian–Nubian Shield. These basement rocks are comprised of the whole tectonic history since their formation. The Suez Rift initiation model and proposed thermal overprint role in the rifting process and flank development remain uncertain. Additionally, the amplitude of different regional tectonic events’ effects on the region is still debatable. Integration of fission-track thermochronology data with modeling of the time-temperature history has demonstrated efficiency in addressing such issues. In the context of this study, eleven representative samples were collected from the different rock units in the Wadi El-Dahal area at the northern tip of the western flank of the Suez Rift. These samples revealed Carboniferous zircon fission-track cooling ages of 353 ± 9 Ma and 344 ± 11 Ma. Meanwhile, the apatite fission-track analysis provided two spatially separated age groups: Permian-Triassic and Late Cretaceous, with average ages of 249 ± 11 Ma and ca. 86 ± 10 Ma, respectively. The time-temperature modeling revealed four possible cooling pulses representing exhumation events, which were initiated as a response to four tectonic activities: the accretion-subsequent event of erosion during the Neoproterozoic, the Hercynian (Variscan) tectonic event during the Devonian-Carboniferous, the Mid-Atlantic opening during the Cretaceous, and the Suez Rift opening during the Oligocene-Miocene. The western flank of the Suez Rift suggests a passive mechanical type with no extra thermal overprint, as indicated by the dominance of older thermochronological ages, modest rift flank elevations, and a reduction in the heat flow. Full article
Show Figures

Figure 1

15 pages, 3982 KiB  
Article
Reconstructing the Tectonic History of the Arabian–Nubian Shield in Sinai: Low-Temperature Thermochronology Implications on Wadi Agar Area
by Sherif Mansour, Noriko Hasebe, Kamal Abdelrahman, Mohammed S. Fnais and Akihiro Tamura
Minerals 2023, 13(4), 574; https://doi.org/10.3390/min13040574 - 20 Apr 2023
Cited by 11 | Viewed by 2654
Abstract
The Arabian–Nubian Shield envelops the entire regional tectonic history from its formation during the Ediacaran to the Red Sea/Gulf of Suez rifting in the Oligocene–Miocene. The occurrence and extent of the expected successive tectonic events on Sinai basement rocks remain uncertain. Integration of [...] Read more.
The Arabian–Nubian Shield envelops the entire regional tectonic history from its formation during the Ediacaran to the Red Sea/Gulf of Suez rifting in the Oligocene–Miocene. The occurrence and extent of the expected successive tectonic events on Sinai basement rocks remain uncertain. Integration of thermochronological techniques with time–temperature modelling has proven to be a powerful tool for thermal-tectonic history reconstruction. Therefore, we collected representative samples from the Arabian–Nubian Shield basement rocks of the Wadi Agar area at the eastern flank of the Suez rift. Zircon fission-track data show two cooling age possibilities of Ediacaran and Devonian ages. Meanwhile, apatite fission-track data represent three cooling age spans of Carboniferous, Triassic, and Cretaceous. The integration of these data with the modelled time–temperature histories reveals four different cooling events synchronous with the regional events; (1) the Neoproterozoic post-accretion erosional event that causes near-surface rock uplift, (2) the Devonian–Carboniferous Hercynian tectonic event which affected the region with rocks exhumation of ca. 4.2 ± 1.4 km, (3) the Triassic Gondwana breakup initiation, and (4) the Oligocene–Miocene Gulf of Suez rifting which caused flanks uplift in the studied region of ca. 1.2 ± 0.4 km. The Gulf of Suez is a passive rift with a dominant mechanical component that is divided into two differently exhumed northern and southern segments, where an additional far-field thermal overprint was restricted to the southern segment. Full article
Show Figures

Figure 1

12 pages, 45756 KiB  
Article
Characteristics and Controlling Role in Hydrocarbon Accumulation of Strike-Slip Faults in the Maigaiti Slope
by Bin Wang, Changchao Chen, Jiangwei Shang, Ming Lei, Wenhui Zhu, Yang Qu, Di Sun, Chunyan Sun and Li Li
Processes 2023, 11(4), 1049; https://doi.org/10.3390/pr11041049 - 31 Mar 2023
Cited by 2 | Viewed by 1845
Abstract
The Maigaiti Slope is a significant oil-gas-bearing field in the Tarim Basin. Based on 3D and 2D seismic data, systematic interpretation, stage sorting and genetic analysis of strike-slip faults in the Maigaiti Slope were carried out for the first time. The relationship between [...] Read more.
The Maigaiti Slope is a significant oil-gas-bearing field in the Tarim Basin. Based on 3D and 2D seismic data, systematic interpretation, stage sorting and genetic analysis of strike-slip faults in the Maigaiti Slope were carried out for the first time. The relationship between strike-slip faults and hydrocarbon accumulation was studied in combination with the fine dissection of hydrocarbon reservoirs. The study suggested that: (1) Staging and segmentation characteristics of strike-slip faults are evidently presented in the Maigaiti Slope. According to active periods, strike-slip faults can be divided into early Caledonian period, late Caledonian period, Hercynian period, and Himalayan period. According to plane distribution characteristics, strike-slip faults can be divided into the west Maigaiti Segment, mid-Maigaiti Segment, Madong Segment, and Bachu Segment. The main active periods and plane distribution of strike-slip faults in different sections are remarkably different. This analysis suggests that it is the response to multi-period and multi-directional tectonic movements, which are primarily dominated by the migration and evolution of the Hetian paleo-uplifts. (2) The coupling relationship between the active period of strike-slip faults and the trap forming period is the key to hydrocarbon accumulation in the Carboniferous–Ordovician, which determines the petroleum properties and enrichment horizon of the Cambrian post-salt system; medium-heavy oil is in the Caledonian period, light oil in the Indosinian period, and dry gas in the Himalayan period. Full article
(This article belongs to the Special Issue Physical, Chemical and Biological Processes in Energy Geoscience)
Show Figures

Figure 1

26 pages, 26280 KiB  
Article
The Missing Link in the Genesis of the Lower Paleozoic Copper Deposits of the Anti-Atlas (Morocco): The Late Triassic Central Atlantic Magmatic Province Event
by Mohammed Ouchchen, El Hassan Abia, Abderrahmane Soulaimani, Mohamed Abioui, Brandon Lutz, Mohammed Benssaou, Kamal Abdelrahman, Tamer Abu-Alam, Fatima Zahra Echogdali and Said Boutaleb
Minerals 2023, 13(4), 488; https://doi.org/10.3390/min13040488 - 30 Mar 2023
Cited by 13 | Viewed by 4514
Abstract
Copper mineralization in the Lower Paleozoic sedimentary cover of the Anti-Atlas (Morocco) is continually being revised not only to improve its mining capacity, but also to determine its origin, which remains a matter of debate. As evidenced by the various models proposed, the [...] Read more.
Copper mineralization in the Lower Paleozoic sedimentary cover of the Anti-Atlas (Morocco) is continually being revised not only to improve its mining capacity, but also to determine its origin, which remains a matter of debate. As evidenced by the various models proposed, the related research is fragmented, localized, and confusing. The origin of the Anti-Atlas Lower Paleozoic copper mineralization is shared between synergistic and epigenetic processes or a superposition of the two processes. Based on new tectono-magmatic data and a reinterpretation of the ore structural arrangement, we propose a link between the last concentration of copper deposits and the Late Triassic–Early Liassic CAMP (Central Atlantic Magmatic Province) tectono-thermal event, as evidenced by the significant concentration of copper mineralization in the three NE–SW corridors affected by extensional faults, some of which are filled with dolerite CAMP magma. The heat flow generated by the mafic dykes within these reactivated corridors causes mineralized fluids to up well into the sedimentary layers, depositing material rich in juvenile or leached copper, or even a mixture of the two. In some cases, these fluids are trapped by fracture systems that accompany passive folds initiated on normal faults. In other cases, these fluids can infiltrate bedding planes, and even karst caves, formed during carbonate exhumation. Notably, extensive NE–SW faults systematically cover the early Hercynian structures, suggesting that they belong to a post-Hercynian extensional episode. During the Late Triassic, the global fragmentation of the Pangaea supercontinent was manifested by the stretching of the continental crust at the margin of northwest Africa, with the simultaneous opening of the Central Atlantic Ocean and emplacement of CAMP magmatism. This last and often overlooked tectonothermal event must be considered in the remobilization and reconcentration of copper mineralization and other mineralization in Morocco. Full article
Show Figures

Figure 1

25 pages, 5547 KiB  
Article
Interdisciplinary Approach and Geodynamic Implications of the Goutitir Geothermal System (Eastern Meseta, Morocco)
by El Mehdi Jeddi, Ahmed Ntarmouchant, Maria do Rosário Carvalho, Telmo M. Bento dos Santos, Eduardo Anselmo Ferreira da Silva, Mustapha Elabouyi, Youssef Driouch, Brahim Mali, Nahla Ntarmouchant, My Hachem Smaili, Beatriz Cotrim and Mohamed Dahire
Water 2023, 15(6), 1109; https://doi.org/10.3390/w15061109 - 14 Mar 2023
Cited by 3 | Viewed by 3438
Abstract
Morocco has an important geothermal potential materialized by its several thermal springs which constitute an essential surface geothermal indicator. These springs are dispersed throughout the country and present in every major structural domain. However, a significant amount is concentrated in the northern and [...] Read more.
Morocco has an important geothermal potential materialized by its several thermal springs which constitute an essential surface geothermal indicator. These springs are dispersed throughout the country and present in every major structural domain. However, a significant amount is concentrated in the northern and northeastern areas. Associated with the great hydrothermal system of eastern Morocco, the thermal spring of Goutitir emerges in the Meso-Cenozoic sedimentary formations located east of the Guercif Basin, composed of a mixture of clays, carbonates, and marls, covered in unconformity by Quaternary tabular molasses. The upflow of the thermal water is dependent of Alpine faults systems with N30 and N100 directions, which are probable reactivated Hercynian structures that facilitate its circulation to the surface. The Goutitir spring has been studied by an interdisciplinary approach to identify the origin of the thermal water, the rock–water interactions, and the reservoir temperatures, contributing to the establishment of the conceptual model of the associated hydrothermal system. This thermal water is of chloride-sodium type with a hyperthermal character (43–47 °C). The isotopic composition (δ18O = −8.7 to −8.35‰; δ2H = −58.6 to −54.3‰) indicates a meteoric origin and a recharging zone located at around 2000 m of altitude. The chemical composition allows to classify the water as chloride-sodium hydrochemical facies, stabilized at ~100 °C in crystalline basement rocks, which, according to seismic data, are located at ~3 km depth. The concentrations, patterns, and correlations of trace elements point out water–rock interaction processes between the deep water and basic magmatic rocks. The integration of the chemical and isotopic data and the surface geological context shows that the Goutitir water flows within a hydrothermal zone were basic to ultrabasic lamprophyres rich in gabbroic xenoliths outcrop, witnessing the existence, at depth, of basic plutons. Moreover, near the source, these veins are strongly altered and hydrothermalized, showing late recrystallization of centimetric-sized biotites. The chloride-sodium composition of this water may also be a testimony to the presence and reaction with the overlying Triassic saline and gypsiferous and Meso-Cenozoic mainly carbonated formations. Full article
(This article belongs to the Special Issue The Use of Environmental Isotopes in Hydrogeology)
Show Figures

Figure 1

Back to TopTop