Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = He-Ar-S isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10062 KB  
Article
Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes
by Zhenjiang Liu, Shaobo Cheng, Changrong Liu, Benjie Gu and Yushan Xue
Minerals 2025, 15(1), 14; https://doi.org/10.3390/min15010014 - 26 Dec 2024
Cited by 5 | Viewed by 1077
Abstract
The Jiaodong Peninsula is renowned for its significant gold reserves, which exceed 4500 tons. In this study, we conducted zircon SHRIMP U-Pb dating, 40Ar/39Ar geochronology, electron probe microanalysis (EPMA) analysis, and He-Ar isotope analysis on samples from the Shuigou gold [...] Read more.
The Jiaodong Peninsula is renowned for its significant gold reserves, which exceed 4500 tons. In this study, we conducted zircon SHRIMP U-Pb dating, 40Ar/39Ar geochronology, electron probe microanalysis (EPMA) analysis, and He-Ar isotope analysis on samples from the Shuigou gold deposit located in the Qixia-Penglai-Fushan metallogenic area of central Jiaodong. This quartz vein-type gold deposit is characterized by three mineralization stages: (I) the quartz-pyrite stage, (II) the quartz-polymetallic sulfide stage, and (III) the calcite stage. In stages I and II, gold primarily exists as native gold or electrum. Preliminary analysis suggests that the deposit contains rare critical metals, including bismuth (Bi), tellurium (Te), and antimony (Sb). The Sb is found as pyrargyrite in stage III, while the other critical elements occur as isomorphisms or nanoparticles within host minerals such as pyrite, native gold, and electrum. Geochronology data indicate that the pre-mineralization Guojialing monzogranite formed around 126 ± 1.6 Ma, the syn-mineralization muscovite formed at approximately 125 Ma, and the post-mineralization diorite porphyrite formed at 120.4 ± 1.8 Ma. The 3He/4He ratios of fluid inclusions in the main-stage pyrite range from 0.26 to 1.26 Ra, and the 40Ar/36Ar ratios vary from 383 to 426.6. These findings suggest that the Shuigou gold deposit formed during the destruction of the North China Craton (NCC), similar to other super-large gold deposits in the Jiaodong Mesozoic gold metallogenic province. Gold mineralization has been influenced by mantle, crustal, and meteoric fluids. Full article
Show Figures

Figure 1

18 pages, 2454 KB  
Article
Mantle Volatiles and Heat Contributions to the Cu-Pb-Zn Mineralization in the Baoshan Deposit, South China: Constraints from He and Ar Isotopes
by Jinchuan Huang, Jiantang Peng and Tengxiang Xie
Minerals 2024, 14(8), 839; https://doi.org/10.3390/min14080839 - 19 Aug 2024
Viewed by 1410
Abstract
The Baoshan deposit is one of the important Cu-Pb-Zn deposits associated with granitic rocks in the Nanling Range, South China. Here, we present He and Ar isotope data for the Baoshan deposit to decipher the contributions of mantle-derived volatiles and heat to its [...] Read more.
The Baoshan deposit is one of the important Cu-Pb-Zn deposits associated with granitic rocks in the Nanling Range, South China. Here, we present He and Ar isotope data for the Baoshan deposit to decipher the contributions of mantle-derived volatiles and heat to its Cu-Pb-Zn mineralization. The ore-forming fluids in sphalerite and pyrite exhibited 3He/4He ratios up to 1.51 Ra. A linear correlation between He and Ar isotopes suggests that the ore-forming fluids were a mixture of a predominantly mantle-derived fluid with a high 3He/4He ratio and a shallow crustal fluid, characterized by a low 3He/4He ratio. The δ34S values of sulfides in the Baoshan deposit ranged from +2.30 to +5.21‰, consistent with the magma-derived sulfur. The calculated 3He/Q ratios for the ore-forming fluid exceeded those of mid-oceanic ridge hydrothermal solutions by 10 to 50 times, indicating that the ore-forming fluids acquired both heat and volatiles in a convective hydrothermal regime rather than a conductive one. Therefore, there is a significant contribution of mantle-derived volatiles, heat, and possibly metals, to the Cu-Pb-Zn mineralization in the Baoshan deposit, and the continuous influx of mantle-derived fluids/melts probably plays a crucial role during the Cu-Pb-Zn mineralization related to granitic rocks. Full article
Show Figures

Figure 1

14 pages, 3681 KB  
Article
Mantle-Derived Noble Gas Isotopes in the Ore-Forming Fluid of Xingluokeng W-Mo Deposit, Fujian Province
by Yun Gao, Bailin Chen, Liyan Wu, Jianfeng Gao, Guangqian Zeng and Jinghui Shen
Minerals 2022, 12(5), 595; https://doi.org/10.3390/min12050595 - 7 May 2022
Cited by 3 | Viewed by 2659
Abstract
China has the largest W reserves in the world, which are mainly concentrated in south China. Although previous studies have been carried out on whether mantle material is incorporated in granites associated with W deposits, the conclusions have been inconsistent. However, rare gas [...] Read more.
China has the largest W reserves in the world, which are mainly concentrated in south China. Although previous studies have been carried out on whether mantle material is incorporated in granites associated with W deposits, the conclusions have been inconsistent. However, rare gas isotopes can be used to study the contribution of mantle-to-W mineralization. In this paper, we investigated the He and Ar isotope compositions of fluid inclusions in pyrite and wolframite from the Xingluokeng ultra-large W-Mo deposit to evaluate the origin of ore-forming fluids and discuss the contribution of the mantle-to-tungsten mineralization. The He-Ar isotopic compositions showed that the 3He/4He ratios of the ore-forming fluid of the Xingluokeng deposit ranged from 0.14 to 1.01 Ra (Ra is the 3He/4He ratio of air, 1 Ra = 1.39 × 10−6), with an average of 0.58 Ra, which is between the 3He/4He ratios of mantle fluids and crustal fluids, suggesting that the mantle-derived He was added to the mineralizing fluid, with a mean of 8.7%. The 40Ar/36Ar ratios of these samples ranged from 361 to 817, with an average of 578, between the atmospheric 40Ar/36Ar and the crustal and/or mantle 40Ar/36Ar. The results of the He-Ar isotopes from Xingluokeng W-Mo deposit showed that the ore-forming fluid of the deposit was not the product of the evolution of pure crustal melt. The upwelling mantle plays an important role in the formation of tungsten deposits. Full article
Show Figures

Figure 1

19 pages, 17670 KB  
Article
Genesis of the Late Cretaceous Longquanzhan Gold Deposit in the Central Tan-Lu Fault Zone, Shandong Province, China: Constraints from Noble Gas and Sulfur Isotopes
by Chuanpeng Liu, Wenjie Shi, Junhao Wei, Huan Li, Aiping Feng, Jun Deng, Yonglin Yao, Jiantai Zhang and Jun Tan
Minerals 2021, 11(3), 250; https://doi.org/10.3390/min11030250 - 28 Feb 2021
Cited by 3 | Viewed by 2855
Abstract
The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone [...] Read more.
The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

17 pages, 2607 KB  
Article
Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia
by Rinaldi Idroes, Muhammad Yusuf, Saiful Saiful, Muksin Alatas, Subhan Subhan, Andi Lala, Muslem Muslem, Rivansyah Suhendra, Ghazi Mauer Idroes, Marwan Marwan and Teuku Meurah Indra Mahlia
Energies 2019, 12(23), 4442; https://doi.org/10.3390/en12234442 - 22 Nov 2019
Cited by 43 | Viewed by 6270
Abstract
A geochemistry study has been done in four geothermal manifestations—Ie-Seu’um, Ie-Brôuk, Ie-Jue and the Van-Heutz crater—located in the north zone of Seulawah Agam mountain (Aceh Besar District, Indonesia). The study was performed through water and gas analysis. Water analysis were [...] Read more.
A geochemistry study has been done in four geothermal manifestations—Ie-Seu’um, Ie-Brôuk, Ie-Jue and the Van-Heutz crater—located in the north zone of Seulawah Agam mountain (Aceh Besar District, Indonesia). The study was performed through water and gas analysis. Water analysis were done for all geothermal manifestations, but gas analysis was only done for the Ie-Jue manifestation that has fumaroles. Cation and anion contents were analyzed by ion chromatography, ICP-OES, alkalimetry titrations, and spectrophotometry, meanwhile isotopes were measured by a Liquid Water Isotope Analyzer. The resulting data were used for fluid and gas geothermometry calculations, and plotted in a FT-CO2 Cross-Plot and a CH4-CO2-H2S triangle diagram to obtain reservoir temperatures. The data were also plotted by a Cl-HCO3-SO4 triangle and Piper diagram to obtain the water type and dominant chemical composition, a Na-K-Mg triangle diagram to obtain fluid equilibria, the isotope ratio in the stable isotope plot to obtain the origin of water, and a N2-He-Ar triangle diagram to establish the origin of fumaroles. The water analysis results showed that (1) Ie-Seu’um has an average reservoir temperature of 241.9 ± 0.3 °C, a chloride water type, a dominant Na-K-Cl chemical composition, a mature water fluid equilibrium, and water of meteoric origin; (2) Ie-Brôuk has an average reservoir temperature of 321.95 ± 13.4 °C, a bicarbonate water type, a dominant Na-Ca-HCO3chemical composition, an immature water fluid equilibrium, and water of meteoric origin; (3) Ie-Jue has an average reservoir temperature of 472.4 ± 91.4 °C, a sulphate water type, a dominant Ca-SO4 chemical composition, an immature water fluid equilibrium and water of meteoric origin; and (4) the Van-Heutz crater has an average reservoir temperature of 439.3 ± 95.3 °C, a sulphate water type, a dominant Ca-SO4 chemical composition, an immature water fluid equilibrium and water of magmatic origin. The results of our gas analysis showed that Ie-Jue has an average reservoir temperature of 258.85 °C, and water of meteoric origin. Based on the reservoir temperatures, the geothermal manifestation of the north zone of Seulawah Agam mountain is considered as a high-temperature geothermal system suitable for power plant development. Full article
Show Figures

Figure 1

27 pages, 21150 KB  
Article
Copper Sulfide Remobilization and Mineralization during Paleoproterozoic Retrograde Metamorphism in the Tongkuangyu Copper Deposit, North China Craton
by Xuan Liu, Kuifeng Yang, Brian Rusk, Zhengjie Qiu, Fangfang Hu and Jacques Pironon
Minerals 2019, 9(7), 443; https://doi.org/10.3390/min9070443 - 18 Jul 2019
Cited by 7 | Viewed by 5414
Abstract
The Tongkuangyu copper deposit, North China Craton, is hosted in a volcano-sedimentary sequence (ca. 2.2 Ga) that metamorphosed to the lower amphibolite facies at ca. 1.9 Ga. Petrographic observations revealed various metamorphic fabrics (mineral alignment and foliations) and several generations of biotite, chlorite, [...] Read more.
The Tongkuangyu copper deposit, North China Craton, is hosted in a volcano-sedimentary sequence (ca. 2.2 Ga) that metamorphosed to the lower amphibolite facies at ca. 1.9 Ga. Petrographic observations revealed various metamorphic fabrics (mineral alignment and foliations) and several generations of biotite, chlorite, and pyrite. Sulfide Pb-Pb dating indicates that copper mineralization occurred at 1960+46/−58 Ma, younger than the zircon U-Pb age of the host metatuff (2180 Ma to 2190 Ma), but close to the timing of regional metamorphism (ca. 1.9 Ga). Electron probe analyses show that the biotites belong to the magnesium-rich variety, and were formed at 470 to 500 ° C based on Ti-in-biotite thermometry. Chlorites belong to ripidolite and pycnochlorite, and were formed at ca. 350 ° C based on the Al geothermometer. Pyrites in porphyry, metatuffs, and quartz veins have contrasting Ni and Co concentrations, pointing to a local remobilization. Hydrogen and oxygen isotopic analyses suggest that biotite and chlorite were formed by metamorphic waters whereas quartz records much lower δ D f l u i d values, reflecting the influence of meteoric water. Fluid inclusions in pyrite and chalcopyrite in metatuff and quartz vein contain extremely radiogenic 4 He and 40 Ar, indicating a crustal origin for the fluids. Sulfides show a magmatic sulfur isotopic signature, likely indicating the presence of preexisting volcanism-related sulfides. We proposed that the early layered copper sulfides formed during metamorphic retrogression at ca. 1.9 Ga and the late vein-type sulfides were derived from the remobilization of the earlier sulfides by infiltration of external fluids such as residual seawater and metamorphic fluids at shallow level. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

25 pages, 11633 KB  
Article
He-Ar Isotopes and Trace Gas Compositions of Fluid Inclusions in Massive Sulphides from the Yushui Copper-Polymetallic Deposit, South China: Metallogenic Implications
by Yi Huang, Zhongwei Wu, Xiaoming Sun, Yan Wang, Guiyong Shi, Wei Zhai and Yao Guan
Minerals 2019, 9(5), 258; https://doi.org/10.3390/min9050258 - 29 Apr 2019
Cited by 4 | Viewed by 4930
Abstract
The Yushui ore deposit, located in the middle section of the Yong’an-Meixian Hercynian depression, is a medium-sized Cu-polymetallic massive sulphide deposit in Eastern Guangdong Province, South China. This deposit is characterized by unusually high copper grade (up to 50–60 wt. % Cu). Other [...] Read more.
The Yushui ore deposit, located in the middle section of the Yong’an-Meixian Hercynian depression, is a medium-sized Cu-polymetallic massive sulphide deposit in Eastern Guangdong Province, South China. This deposit is characterized by unusually high copper grade (up to 50–60 wt. % Cu). Other metallic elements, such as lead, zinc and silver, are also economically important in the Yushui ore bodies. The aim of this study was to apply N2–Ar–He systematics, together with organic gases (light-hydrocarbon tracers), to constrain the origin and evolution of ore-forming fluids. The helium-argon isotopes and trace gas compositions of fluid inclusions trapped within metal sulphide minerals were measured for a number of bonanza ores from the Yushui deposit. The noble gas concentrations in the studied samples vary over one to two orders of magnitude (4He: 2.27–160.00 × 10−5 cm3 STP g−1; 3He: 0.53–34.88 × 10−12 cm3 STP g−1; 40Ar: 6.28–37.82 × 10−7 cm3 STP g−1; 36Ar: 1.25–10.40 × 10−9 cm3 STP g−1). Our data show a narrow range of 3He/4He ratios from 0.006 to 0.056 Ra (~0.026 Ra on average, n = 8), which are considerably lower than the modern atmospheric end-member value; whereas the 40Ar/36Ar ratios (ranging from 333.76 to 501.68, with an average of 397.53) are significantly greater than that of air-saturated water. Most of the bornite samples have somewhat higher 3He/4He ratios of trapped fluids when compared to chalcopyrite. Overall, these He-Ar results are well within the range of crustal reservoir, thus implying a predominantly crustal source (originated from Caledonian basement) for ore-forming solutions, with little contribution from mantle-derived fluids. Analysis of the N2–Ar–He composition in Cu-rich sulphides indicates that the Yushui ore-forming fluids were probably derived from formation water (or basinal hot brines). Moreover, organic gas species identified in sulphide-hosted fluid inclusions are mainly composed of C1–C4 alkanes, while the concentrations of unsaturated olefins and aromatic hydrocarbons are very low. In particular, most chalcopyrite samples with relatively low 3He/4He ratios (0.006–0.016 Ra) and 40Ar*/4He values (0.0002–0.0012) are generally characterized by very high CO2/CH4 ratios (~60–102). All these suggest that main-stage Cu-Ag metallogenic processes might have not been affected by high-temperature magmatic activities or superimposed by strong metamorphic overprinting, although some chalcopyrite-rich ores appear to be influenced by later stage hydrothermal processes. In summary, neither magmatic input nor convecting seawater has played an important role in the formation of Yushui copper-polymetallic deposit. The massive sulphide ore bodies were products of water–rock interaction between metal-bearing basinal brines and the host sedimentary strata. Full article
(This article belongs to the Special Issue Massive Sulfide Deposits all around the World)
Show Figures

Figure 1

22 pages, 1861 KB  
Article
He–Ar–S Isotopic Compositions of Polymetallic Sulphides from Hydrothermal Vent Fields along the Ultraslow-Spreading Southwest Indian Ridge and Their Geological Implications
by Yan Wang, Zhongwei Wu, Xiaoming Sun, Xiguang Deng, Yao Guan, Li Xu, Yi Huang and Kaijun Cao
Minerals 2018, 8(11), 512; https://doi.org/10.3390/min8110512 - 7 Nov 2018
Cited by 5 | Viewed by 6173
Abstract
Noble gases have become a powerful tool to constrain the origin and evolution of ore-forming fluids in seafloor hydrothermal systems. The aim of this study was to apply these tracers to understand the genesis of newly discovered polymetallic sulphide deposits along the ultraslow-spreading [...] Read more.
Noble gases have become a powerful tool to constrain the origin and evolution of ore-forming fluids in seafloor hydrothermal systems. The aim of this study was to apply these tracers to understand the genesis of newly discovered polymetallic sulphide deposits along the ultraslow-spreading Southwest Indian Ridge (SWIR). The helium, argon, and sulphur isotope compositions of metal sulphide minerals were measured for a number of active/inactive vent fields in the Indian Ocean. The helium concentrations and isotopic ratios in these ore samples are variable (4He: 0.09–2.42 × 10−8 cm3STP∙g−1; 3He: 0.06–3.28 × 10−13 cm3STP∙g−1; 3He/4He: 1.12–9.67 Ra) and generally greater than the modern atmosphere, but significantly lower than those in massive sulphides from the fast-spreading East Pacific Rise (EPR), especially for three Cu–Fe-rich samples from the ultramafic-hosted Tianzuo and Kairei vent fields. On the contrary, most of the SWIR sulphide deposits have somewhat higher 40Ar/36Ar ratios of trapped fluids (ranging from 290.6 to 303.4) when compared to the EPR ore samples. Moreover, the majority of sulphide minerals from the Indian Ocean have much higher δ34S values (3.0‰–9.8‰, ~5.9 on average, n = 49) than other basaltic-hosted active hydrothermal systems on the EPR. Overall, these He–Ar–S results are well within the range of seafloor massive sulphide deposits at global sediment-starved mid-ocean ridges (MORs), lying between those of air-saturated water (ASW) and mid-ocean ridge basalt (MORB) end members. Therefore, our study suggests that the helium was derived mainly from the MORB mantle by degassing during the high-temperature stage of hydrothermal activity, as well as from a mixture of vent fluids with variable amounts of ambient seawater during either earlier or late-stage low-temperature hydrothermal episodes, whereas the argon in ore-forming fluids trapped within sulphide minerals was predominantly derived from deep-sea water. Additionally, relatively high δ34S values exhibit a great estimated proportion (up to nearly 40%) of seawater-derived components. In summary, sub-seafloor extensive fluid circulation, pervasive low-temperature alteration, shallow seawater entrainment, and mixing processes, may make a larger contribution to the SWIR hydrothermal ore-forming systems, compared to fast-spreading centres. Full article
(This article belongs to the Special Issue Deep-Sea Minerals and Gas Hydrates)
Show Figures

Figure 1

Back to TopTop