
Citation: Gao, Y.; Chen, B.; Wu, L.;

Gao, J.; Zeng, G.; Shen, J.

Mantle-Derived Noble Gas Isotopes

in the Ore-Forming Fluid of

Xingluokeng W-Mo Deposit, Fujian

Province. Minerals 2022, 12, 595.

https://doi.org/10.3390/

min12050595

Academic Editors: Huan Li,

Rongqing Zhang, Jie-Hua Yang,

Jingya Cao and Maria

Economou-Eliopoulos

Received: 8 April 2022

Accepted: 5 May 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Mantle-Derived Noble Gas Isotopes in the Ore-Forming Fluid
of Xingluokeng W-Mo Deposit, Fujian Province
Yun Gao 1,2 , Bailin Chen 2,*, Liyan Wu 3,*, Jianfeng Gao 3 , Guangqian Zeng 2 and Jinghui Shen 2

1 School of Earth Sciences, China University of Geosciences, Wuhan 430074, China; gaoyun_10@163.com
2 Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Institute of Geomechanics, Chinese

Academy of Geological Sciences, Beijing 100081, China; zengguangqian90@163.com (G.Z.);
wxkssjh@email.cugb.edu.cn (J.S.)

3 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang 550081, China; gaojianfeng@mail.gyig.ac.cn

* Correspondence: cblh6299@263.net (B.C.); wuliyan@mail.gyig.ac.cn (L.W.)

Abstract: China has the largest W reserves in the world, which are mainly concentrated in south
China. Although previous studies have been carried out on whether mantle material is incorporated
in granites associated with W deposits, the conclusions have been inconsistent. However, rare gas
isotopes can be used to study the contribution of mantle-to-W mineralization. In this paper, we
investigated the He and Ar isotope compositions of fluid inclusions in pyrite and wolframite from the
Xingluokeng ultra-large W-Mo deposit to evaluate the origin of ore-forming fluids and discuss the
contribution of the mantle-to-tungsten mineralization. The He-Ar isotopic compositions showed that
the 3He/4He ratios of the ore-forming fluid of the Xingluokeng deposit ranged from 0.14 to 1.01 Ra
(Ra is the 3He/4He ratio of air, 1 Ra = 1.39 × 10−6), with an average of 0.58 Ra, which is between
the 3He/4He ratios of mantle fluids and crustal fluids, suggesting that the mantle-derived He was
added to the mineralizing fluid, with a mean of 8.7%. The 40Ar/36Ar ratios of these samples ranged
from 361 to 817, with an average of 578, between the atmospheric 40Ar/36Ar and the crustal and/or
mantle 40Ar/36Ar. The results of the He-Ar isotopes from Xingluokeng W-Mo deposit showed that
the ore-forming fluid of the deposit was not the product of the evolution of pure crustal melt. The
upwelling mantle plays an important role in the formation of tungsten deposits.

Keywords: He and Ar isotopes; ore-forming fluids; mantle upwelling; Xingluokeng W-Mo deposit;
south China

1. Introduction

China has the largest tungsten reserves in the world, with approximately 10.3 million
tons of WO3 [1,2], and most of the W deposits are mainly clustered in south China (Figure 1),
which accounts for about 80% of the country’s total and around 50% of the world’s to-
tal [3–8]. The formation of W deposits in south China is mainly related to the Mesozoic
(concentrated in 160~150 Ma) magmatic activity [9,10], and most of the W deposits in
south China are concentrated in the Nanling metallogenic belt (NLMB). Traditionally, most
W-related granites are considered as S-type granites, derived from the reworking of ancient
meta-sedimentary rocks [11], and it is thus assumed that tungsten mineralization occurred
without the addition of mantle material, but recent studies suggest that these granites
may be mainly I-type granites [12,13]. The reason for the controversy is that the granites
associated with tungsten mineralization are mainly high-differentiated granites, which
makes it difficult to classify the genetic types and evaluate the influence of mantle on
tungsten mineralization.
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Figure 1. (a) Tectonic map of China. (b) Geologic map showing the distribution of Mesozoic granit-
oids and major tungsten deposits in south China (modified after [14–16]). NLMB = Nanling metal-
logenic belt, QHB = Qin-Hang metallogenic belt, WYB = Wuyi metallogenic belt, ZH-DB F = 
Zhenghe-Dabu fault, NH-NP F = Ninghua-Nanping fault. 

Due to the distinct 3He/4He ratios of the crust (~0.05–0.01 Ra, where Ra is the atmos-
pheric 3He/4He ratio, 1.39 × 10−6) and upper mantle (6–9 Ra), and different 40Ar/36Ar ratio 
of the atmosphere (295.5) versus the crust or mantle, the He-Ar isotopic compositions of
fluid inclusion in minerals have been widely used in the studies of contribution of mantle-
derived components and the relationship between crust–mantle interactions and miner-
alization [17–21]. Recently, a growing number of studies have used the method of He-Ar 
isotopes to prove that mantle-derived components were involved in the genesis of some 
W deposits (such as the Gerês W deposit [22] and Panasqueira W deposit [20] in Portugal, 
Dae Hwa W deposit in South Korea [23], and Xihuashan [24], Yaogangxian [18], 
Shizhuyuan [25], Piaotang [26], Taoxikeng [27], Yaoling-Meiziwo [28], and other W de-
posits in south China). 

The Xingluokeng W-Mo polymetallic deposit is one of the superlarge W deposits in
China and the largest W deposit in the Wuyi metallogenic belt (WYMB), which is histori-
cally a Cu-dominated polymetallic belt [10,29]. Many researchers have studied the petro-
graphic geochemical characteristics [30–32], deposit geochemical characteristics [33,34],

Figure 1. (a) Tectonic map of China. (b) Geologic map showing the distribution of Mesozoic granitoids
and major tungsten deposits in south China (modified after [14–16]). NLMB = Nanling metallogenic
belt, QHB = Qin-Hang metallogenic belt, WYB = Wuyi metallogenic belt, ZH-DB F = Zhenghe-Dabu
fault, NH-NP F = Ninghua-Nanping fault.

Due to the distinct 3He/4He ratios of the crust (~0.05–0.01 Ra, where Ra is the atmo-
spheric 3He/4He ratio, 1.39 × 10−6) and upper mantle (6–9 Ra), and different 40Ar/36Ar
ratio of the atmosphere (295.5) versus the crust or mantle, the He-Ar isotopic compositions
of fluid inclusion in minerals have been widely used in the studies of contribution of
mantle-derived components and the relationship between crust–mantle interactions and
mineralization [17–21]. Recently, a growing number of studies have used the method of
He-Ar isotopes to prove that mantle-derived components were involved in the genesis
of some W deposits (such as the Gerês W deposit [22] and Panasqueira W deposit [20] in
Portugal, Dae Hwa W deposit in South Korea [23], and Xihuashan [24], Yaogangxian [18],
Shizhuyuan [25], Piaotang [26], Taoxikeng [27], Yaoling-Meiziwo [28], and other W deposits
in south China).

The Xingluokeng W-Mo polymetallic deposit is one of the superlarge W deposits in
China and the largest W deposit in the Wuyi metallogenic belt (WYMB), which is histor-
ically a Cu-dominated polymetallic belt [10,29]. Many researchers have studied the pet-
rographic geochemical characteristics [30–32], deposit geochemical characteristics [33,34],
and geochronology [2,35]. However, whether mantle components are involved in the
genesis of the deposit is poorly studied understood. In this paper, we investigated He-Ar
isotopes of the ore fluids trapped in pyrite and wolframite from the Xingluokeng W-Mo
polymetallic deposit, in order to reveal the genesis of the deposit and contribution of
mantle-derived volatiles, providing useful information for understanding the granite-
related tungsten metallogeny in the WYMB.
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2. Geological Background

The south China block is composed of the Yangtze block to the northwest and the
Cathaysia block to the southeast, separated by the Qin-Hang belt [36]. Around 900 Ma
ago, the paleo South China Ocean gradually closed, resulting in the collision of Yangtze
and Cathaysian blocks on both sides of the ocean basin, forming an arc-shaped orogenic
belt with a width of more than 100 km and an extension of about 1500 km at the junction,
i.e., Qin-Hang belt [37,38]. The geological background of south China is complex, with
strong tectonic movements [39,40] and a wide distribution of granites of different ages and
types, which are known for large-scale magmatic activities and mineralization events in
the Mesozoic, forming huge deposits of W, Sn, U, and REE [7,41–45].

The WYMB is located in the northeast of the Cathaysian block and distributed in the
NNE direction (Figure 1), bounded on the north by the Shaoxing-Jiangshan-Pingxiang
fault and adjacent to the Qinhang metallogenic belt on the southeast edge of the Yangtze
block, on the west by the Yingtan–Anyuan fault, near the NLMB, and on the east by
the Lishui-Zhenghe-Dapu fault to the southeast coastal metallogenic belt [46,47]. The
WYMB has experienced major geological events such as the formation and cracking of the
Cathaysian block, the collision and splicing of the Cathaysian block and the Yangtze block,
the collision between the north China block and south China block, and the subduction of
the Pacific plate to the Eurasian continental margin, among which the Yanshanian tectonic
magmatic activity is the strongest [48,49], and forming a large number of Cu, Au, Ag,
Pb, and Zn deposits [50–53], such as the Zijinshan Cu–Au deposit and the Lengshuikeng
Ag–Pb–Zn deposit, as well as some large W deposits, such as the Shangfang W deposit and
Xingluokeng W-Mo deposit. The strata in WYMB include the upper Archean to Quaternary,
in which the pre-Devonian is the basement rock series, the Devonian Middle Triassic is
the caprock rock series dominated by marine sedimentation, and the Meso Cenozoic is the
continental clastic and volcanic rock series. The fault is mainly NNE-trending, followed by
NW-trending, and partly NEE-trending. The study area is located in the western part of
the NEE-trending Nanping-Ninghua fault zone (Figure 1). In addition to the Xingluokeng
deposit, there are also tungsten deposits and mineralized sites in the zone, such as Beikeng
and Guomuyang (Figure 2).Minerals 2022, 12, x FOR PEER REVIEW 4 of 14 
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Devonian–Permian; 6 = Upper Sinian-Lower Cambrian; 7 = Caledonian gneissic biotite monzogran-
ite; 8 = Indosinian gneissic biotite monzogranite; 9 = Yanshanian biotite granite; 10 = Yanshanian 
syenite; 11 = W deposit and mineralization point; 12 = fault; 13 = axis of overturned synclinal; 14 = 
axis of overturned anticline; and 15 = unconformity boundary. 
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western Fujian Province, and is the largest tungsten deposit in Fujian Province, featured 
by large reserves (~ 30 Mt of WO3) and low grade (averaging at 0.23%). In addition to W, 
the reserves of Mo are 3.02 Mt with an average grade of 0.024%. With the deepening of 
the mining depth (the current mining depth is about 600 m elevation), Cu has also reached 
the industrial grade, the available exploration data show that there is still tungsten min-
eralization at 100 m elevation, and the Xingluokeng pluton is characterized by whole rock 
mineralization [32]. 

The outcropped stratigraphic sequences in the area are mainly Sinian Sanxizhai For-
mation (Z2s) and Middle Devonian Tianwadong Formation (D3t). The Sanxizhai For-
mation (Z2s) comprises three sections from the bottom up: metamorphic siltstone with 
lenticular carbonates (Z2s1), metamorphic feldspar quartz sandstone (Z2s2), and metamor-
phic fine sandstone and siltstone (Z2s3). The NEE-trending Xingluokeng inverted anticline 
(dips to SE with an inclination of 43°−63°) controls the distribution of main stratigraphic 
units, with the first section (Z2s1) occurring at the core and the second section (Z2s2) at the 
wings. NEE-trending faults, as the dominant regional structures, control the emplacement 
of the Xingluokeng stock and are the main ore-hosting structures for large quartz vein-
type ore bodies. A series of NW-trending faults was also developed, cross-cutting the 
Xingluokeng stock and the NEE-trending faults in addition to a number of near SN-trend-
ing faults (Figure 3). The Xingluokeng stock is composed of porphyritic biotite granite 
(G1) and medium- to fine-grained biotite granite (G2), which intruded into the north wing 
of overturned anticline along the interface between the first section and the second section 
of the Sanxizhai Formation [33]. The zircon U-Pb ages indicated they were emplaced at 

Figure 2. Regional geological map of the Xingluokeng W-Mo ore field showing W deposits in the
area (modified after [46]). 1 = quaternary; 2 = tertiary; 3 = cretaceous; 4 = Jurassic System; 5 = Upper
Devonian–Permian; 6 = Upper Sinian-Lower Cambrian; 7 = Caledonian gneissic biotite monzogranite;
8 = Indosinian gneissic biotite monzogranite; 9 = Yanshanian biotite granite; 10 = Yanshanian syenite;
11 = W deposit and mineralization point; 12 = fault; 13 = axis of overturned synclinal; 14 = axis of
overturned anticline; and 15 = unconformity boundary.
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3. Deposit Geology

The Xingluokeng W deposit is located about 35 km northeast of Ninghua County,
western Fujian Province, and is the largest tungsten deposit in Fujian Province, featured
by large reserves (~30 Mt of WO3) and low grade (averaging at 0.23%). In addition to
W, the reserves of Mo are 3.02 Mt with an average grade of 0.024%. With the deepening
of the mining depth (the current mining depth is about 600 m elevation), Cu has also
reached the industrial grade, the available exploration data show that there is still tungsten
mineralization at 100 m elevation, and the Xingluokeng pluton is characterized by whole
rock mineralization [32].

The outcropped stratigraphic sequences in the area are mainly Sinian Sanxizhai For-
mation (Z2s) and Middle Devonian Tianwadong Formation (D3t). The Sanxizhai Formation
(Z2s) comprises three sections from the bottom up: metamorphic siltstone with lenticular
carbonates (Z2s1), metamorphic feldspar quartz sandstone (Z2s2), and metamorphic fine
sandstone and siltstone (Z2s3). The NEE-trending Xingluokeng inverted anticline (dips
to SE with an inclination of 43◦–63◦) controls the distribution of main stratigraphic units,
with the first section (Z2s1) occurring at the core and the second section (Z2s2) at the wings.
NEE-trending faults, as the dominant regional structures, control the emplacement of
the Xingluokeng stock and are the main ore-hosting structures for large quartz vein-type
ore bodies. A series of NW-trending faults was also developed, cross-cutting the Xinglu-
okeng stock and the NEE-trending faults in addition to a number of near SN-trending
faults (Figure 3). The Xingluokeng stock is composed of porphyritic biotite granite (G1)
and medium- to fine-grained biotite granite (G2), which intruded into the north wing of
overturned anticline along the interface between the first section and the second section
of the Sanxizhai Formation [33]. The zircon U-Pb ages indicated they were emplaced at
152.5 ± 1.4 Ma and 152.2 ± 1.2 Ma and the geochemical data indicated that G2 is a moder-
ately to highly fractionated I-type granite [30]. The late-stage granite porphyry and aplitic
dikes are well developed in the mining area (Figure 3).
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tion, and carbonatization assemblages. The Re-Os age of molybdenite was 156.3 ± 4.8 Ma 
[2] and the U-Pb age of wolframite were 151.3 ± 5.8 Ma and 150.5 ± 8.1 Ma [35]. 

The consistency of the chondrite-normalized REE distribution pattern of scheelite 
and mineralization-related granite in the Xingluokeng tungsten deposit indicated that the 
ore-forming fluid is mainly derived from the exsolution of magmatic fluid [33]. H-O and 
Sr isotopic compositions also suggested the ore-forming fluids dominantly originated 
from magma and limited meteoric water involved in the late mineralization stage [33]. 

4. Sampling and Analytical Methods 
Wolframite and pyrite in quartz vein from the Xingluokeng W-Mo polymetallic de-

posit were collected for He-Ar isotope study. Samples were collected from different ele-
vations in the open pit, and the detailed sampling information and sample descriptions 
are shown in Figure 4 and Table 1. The samples were crushed to 1~3 mm and the mineral 
(pyrite and wolframite) separates were handpicked under a binocular microscope. 

Figure 3. (a) Geological map of the Xingluokeng W-Mo polymetallic deposit (modified after [2]).
(b) A NNW-SSE trending cross-section of the Xingluokeng W-Mo polymetallic deposit (modified
after [33]). 1 = the second section of Sanxizhai Formation; 2 = the first section of Sanxizhai Formation;
3 = early Yanshanian fine-grained porphyritic granite; 4 = early Yanshanian fine- to medium-grained
granite; 5 = early Yanshanian porphyritic biotite granite; 6 = granite-porphyry dyke; 7 = aplite dyke;
8 = borengite dyke; 9 = sillite dyke; 10 = hornfelsic metamorphic siltstone; 11 = hornfelsic tuff; 12 =
dolomite limestone; 13 = mineralized quartz veins; 14 = axes of reverse anticline; and 15 = fault.

Two major mineralization styles have been identified at Xingluokeng: veinlet-disseminated
and vein-type mineralization. The veinlet-disseminated mineralization mainly consists of
disseminated molybdenite, scheelite, and wolframite, as well as minor pyrite and chalcopy-
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rite in coexistence with quartz, beryl, fluorite, and muscovite, which are densely distributed
in the altered granite and sparsely in the country rocks. The vein-type mineralization
cross-cuts the veinlet-disseminated mineralization with ore minerals of wolframite, scheel-
ite, and sulfides, in coexistence with quartz, K-feldspar, beryl, muscovite, fluorite, and
calcite. Potassic alteration and greisenization are intensive and pervasive within the main
orebody, overprinted by phyllic alteration, silicification, chloritization, and carbonatization
assemblages. The Re-Os age of molybdenite was 156.3 ± 4.8 Ma [2] and the U-Pb age of
wolframite were 151.3 ± 5.8 Ma and 150.5 ± 8.1 Ma [35].

The consistency of the chondrite-normalized REE distribution pattern of scheelite
and mineralization-related granite in the Xingluokeng tungsten deposit indicated that the
ore-forming fluid is mainly derived from the exsolution of magmatic fluid [33]. H-O and Sr
isotopic compositions also suggested the ore-forming fluids dominantly originated from
magma and limited meteoric water involved in the late mineralization stage [33].

4. Sampling and Analytical Methods

Wolframite and pyrite in quartz vein from the Xingluokeng W-Mo polymetallic deposit
were collected for He-Ar isotope study. Samples were collected from different elevations in
the open pit, and the detailed sampling information and sample descriptions are shown in
Figure 4 and Table 1. The samples were crushed to 1~3 mm and the mineral (pyrite and
wolframite) separates were handpicked under a binocular microscope.
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10−8 Pa. Then, the sample was crushed to release the gas, and the released gas was purified 
in multiple stages by four zirconium aluminum pumps and an activated carbon cold trap 
to remove reactive gases such as N2, O2, H2, and CO2, and adsorb Ar, Xe, and Kr. The 
purified He fed into the system and was purified again by a titanium sublimation pump 
with liquid nitrogen, Ar was released at −78°C, and He and Ar were fed into the mass 
spectrometer. The test instrument was Helix SFT rare gas isotope mass spectrometer pro-
duced by Thermo Fisher Scientific company of the United States, and the analytical error 
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cm3 STP, 40Ar < 2.24 × 10−11 cm3 STP) were insignificant. 

Figure 4. Photographs (a–d) and photomicrographs (e,f) of the Xingluokeng pyrite and wolframite
samples. (a–c) are the pyrite samples used for He-Ar isotopic test, and the figures show that pyrite
and other sulfides coexisted with wolframite; d is the wolframite sample used for He-Ar isotopic
test, the figure show that wolframite was better crystallized; (e,f) are photomicrographs of pyrite and
wolframite, which show that pyrite and wolframite were formed at the same metallogenic stage or
slightly later than wolframite. Py = pyrite, Wol = wolframite, Cp = chalcopyrite, Mot = molybdenite,
and Qz = quartz.
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Table 1. Location and description of samples used for this study.

Sample No. Location Mineral Association

X19-10-1 level 828 m Pyrite
Pyrite associated with

wolframite and
quartz

X19-21-2 level 744 m Pyrite
Pyrite associated with

wolframite, quartz,
and muscovite

X19-28-2 level 672 m Pyrite

Pyrite associated with
wolframite,

molybdenite, and
quartz

X19-32-1 level 690 m Pyrite
Pyrite associated with

wolframite, quartz,
and muscovite

X19-33-4 level 690 m Pyrite

Pyrite associated with
wolframite,

chalcopyrite, and
quartz

X19-24-1 level 720 m Pyrite
Pyrite associated with

quartz and
chalcopyrite

X21-1-1 level 672 m Wolframite
Wolframite associated

with quartz and
feldspar

X21-1-2 level 792 m Wolframite
Wolframite associated

with quartz and
feldspar

X19-26-4 level 708 m Wolframite Wolframite associated
with quartz

The He-Ar isotope analysis of fluid inclusions in minerals was carried out at the Beijing
Institute of Geology of Nuclear Industry. The analytical procedures were similar to those
described by [54,55]. First, the sample was cleaned in an acetone medium in ultrasonic
waves for 20 min, then heated to 180 ◦C and degassed under vacuum for 48 h to remove the
gas attached to the mineral surface, and the system vacuum was better than 10−8 Pa. Then,
the sample was crushed to release the gas, and the released gas was purified in multiple
stages by four zirconium aluminum pumps and an activated carbon cold trap to remove
reactive gases such as N2, O2, H2, and CO2, and adsorb Ar, Xe, and Kr. The purified He
fed into the system and was purified again by a titanium sublimation pump with liquid
nitrogen, Ar was released at −78 ◦C, and He and Ar were fed into the mass spectrometer.
The test instrument was Helix SFT rare gas isotope mass spectrometer produced by Thermo
Fisher Scientific company of the United States, and the analytical error of the He-Ar isotope
was less than 10%. Procedural blank contributions (4He < 1.12 × 10−11 cm3 STP, 40Ar <
2.24 × 10−11 cm3 STP) were insignificant.

5. Results

The results of He-Ar isotopes of wolframite and pyrite are shown in Table 2. 3He/4He
values of fluid inclusions in 6 pyrite samples ranged from 0.14 Ra to 1.02 Ra (averaging
at 0.76 Ra). The 40Ar/36Ar values for these samples were 361.3 to 683.2, with an average
of 544.8, the 40Ar values were 27.4 to 53.7 × 10−8 cm3 STP g−1 (averaging at 39.9 × 10−8

cm3 STP g−1), and the 4He values were 156 to 390 × 10−8 cm3 STP g−1 (averaging at
253.5 × 10−8 cm3 STP g−1). Compared with pyrite, the 3He/4He values of 3 wolframite
samples were relatively lower, ranging from 0.21 to 0.25 Ra. The 40Ar/36Ar values for
these samples were 539.6 to 816.7, with an average of 643.5, the 40Ar content was 15.0 to
58.0 × 10−8 cm3 STP g−1 (averaging at 37.9 × 10−8 cm3 STP g−1), and the 4He content was
292 to 646 × 10−8 cm3 STP g−1 (averaging at 498.7). The crushing method can extract the
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noble gas in fluid inclusions of hydrothermal minerals, but one disadvantage of this analysis
technology is that it is difficult to separate the fluid inclusions of different stages in minerals,
and as a result, the experimental results represent the average value of inclusion-trapped
fluids.

Table 2. He-Ar isotopic compositions of fluid inclusions trapped in pyrite and wolframite from the
Xingluokeng W-Mo polymetallic deposit.

Sample No. X19-10-1 X19-21-2 X19-28-2 X19-32-1 X19-33-4 X19-24-1 X21-1-1 X21-1-2 X19-26-4

Mineral Pyrite Pyrite Pyrite Pyrite Pyrite Pyrite Wolframite Wolframite Wolframite
3He (10−14

cm3STP/g) 144 270 551 43 397 303 164 226 94
4He (10−8

cm3STP/g) 156 212 390 218 278 267 558 646 292
3He/4He

(10−7) 9.24 12.74 14.14 1.96 14.28 11.34 2.94 3.50 3.22

R/Ra (± 1σ) 0.66 ± 0.01 0.91 ± 0.01 1.01 ± 0.01 0.14 ± 0.01 1.02 ± 0.01 0.81 ± 0.01 0.21 ± 0.01 0.25 ± 0.01 0.23 ± 0.01
Mantle He

(%) 9.88 13.73 15.28 1.85 15.43 12.19 2.93 3.55 3.24
40Ar (10−8

cm3STP/g) 53.7 27.4 46.1 31.6 47.9 32.7 58.0 40.8 15.0
40Ar/36Ar

(± 1σ) 491 ± 0.4 683 ± 0.3 626 ± 0.4 361 ± 0.2 523 ± 0.3 582 ± 0.9 574 ± 0.8 816 ± 1.0 539 ± 0.7
38Ar/36Ar

(± 1σ)
0.191 ±

0.003 0.19 ± 0.002 0.187 ±
0.003

0.191 ±
0.002

0.189 ±
0.003

0.193 ±
0.003

0.193 ±
0.002

0.188 ±
0.002

0.189 ±
0.002

40Ar* (10−7) 2.1 1.6 2.4 0.6 2.1 1.6 2.8 2.6 0.7
40Ar* (%) 39.8 56.7 52.8 18.2 43.6 49.3 48.5 63.8 45.2
3He/36Ar

(10−3) 1.32 6.73 7.50 0.49 4.34 5.39 1.62 4.53 3.38

F4He 8648 32,036 32,132 15,106 18,427 28,815 33,474 78,370 63,661

Mantle He (%) = [(3He/4He)sample − (3He/4He)crust]/[(3He/4He)mantle − (3He/4He)crust] × 100 [56], where
(3He/4He)crust = 0.02 Ra, (3He/4He)mantle = 6.5 Ra [57]; F4He = (4He/36Ar)sample/(4He/36Ar)air, where
(4He/36Ar)air = 0.165 [20]; and 40Ar* = 40Ar × [1 − (40Ar/36Ar)air/(40Ar/36Ar)sample], where (40Ar/36Ar)air

≈ 295.5 40Ar* (%) = 40Ar*/40Ar.

6. Discussion
6.1. The Effect of Post-Ore Processes on He-Ar Isotopes

Helium and argon isotope compositions of fluid inclusions hosted by metallic minerals
in ore deposits can be used to trace the contribution of mantle-derived fluids [24–26,28,58,59].
However, the post-metallogenic geological processes may affect the He and Ar isotope
composition in the fluid inclusions and change the original information of ore-forming
fluids; therefore, it is necessary to evaluate the degree of influence of post-metallogenic
geological processes [60,61]. He isotopic composition can be affected by cosmogenic 3He,
nucleogenic production of 3He, He loss and diffusiveness, etc. [18]. The 3He content of
ore-forming fluids in minerals can be affected by cosmogenic 3He, but the influence range
of cosmic rays is only within 1.5 m of the Earth’s surface [19,58]. The samples collected
in this study were all newly mined in the open pit, and thus the effect of cosmogenic 3He
could be ignored. Nucleogenic 3He can be produced by the 6Li(n,α)3H(β-)3He reaction;
however, due to the low concentration of Li in the fluid inclusions, the in situ production
of 3He is negligible [21,23,62]. The radiogenic 4He in the fluid inclusion also negligible
due to the low concentrations of U and Th [18,20,21,56]. Moreover, due to the influence of
the stopping distance of α particles, radiogenic 4He has no influence on the 4He of fluid
inclusions with diameters less than 20 µm [57]. He and Ar are released by crushing, which
greatly reduces the influence of noble gases produced by elemental decay in the lattice [23].

The impact of 40Ar produced by the decay of 40K in the mineral lattice should be
negligible because of the low diffusivity of Ar in pyrite [63,64] and the extremely low
concentration of K in pyrite [64,65]. The 40Ar produced by the decay of K in fluid inclusions
and the host mineral could be estimated by the equation 40Ar atoms g−1 yr−1 = 102.2
[K] [66], and the content of K in most tungsten deposits is about 1 ppm [67–69], and
as a result, the radiogenic 40Ar is 5.7 × 10−10 cm3 STP/g, which is several orders of
magnitude lower than the total 40Ar content obtained in this study (average in 3.9 × 10−7

cm3 STP/g), indicating that the effect of the decay of K in the fluid inclusions could be
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neglected. In general, the measured 40Ar/36Ar ratios are lower than the true 40Ar/36Ar
ratios of the fluids due to the contributions of atmospheric Ar [19]. Previous studies
have confirmed that wolframite and pyrite are suitable minerals for the study of He-Ar
isotopes [18–20,22,23,65]; therefore, the He and Ar isotopic values obtained in this study
can represent the characteristics of ore-forming fluids.

6.2. Source of He and Ar

The sources of noble gases in hydrothermal minerals mainly includes ASW, mantle flu-
ids, and crustal fluids, which have significantly different He-Ar isotopic compositions [19,66].
Compared with mantle fluids and crustal fluids, the amount of He in the ASW is extremely
low, which is not enough to have a significant effect on the abundance and isotopic composi-
tion of He in fluids [23], supported by the high F4He values (6366~78370, Table 2); therefore,
He in ore-forming fluids mainly comes from the mantle or crust. The 3He/4He ratios of
mantle fluids are significantly higher than those of crustal fluids, where the 3He/4He ratios
of the upper mantle is 7–9 Ra [70], the subcontinental lithospheric mantle (SCLM) is 6–7
Ra [71], and the crust is 0.01~0.05 Ra [72]. The 3He/4He ratios of pyrite and wolframite in
the Xingluokeng W-Mo polymetallic deposit were 0.14~1.02 Ra and 0.21~0.25 Ra, respec-
tively, which are higher than the crustal fluid ratio but lower than the mantle fluid ratio,
indicating that the He in the ore-forming fluids was a mixture of crustal fluids and mantle
components. According to the estimation formula [66], the proportions of mantle-derived
He in pyrite and wolframite were 1.85~15.28% and 2.93~3.24%, respectively, indicating
that the He in the ore-forming fluids was mainly derived from the crust and minorly from
the mantle.

The 40Ar/36Ar ratios of pyrite and wolframite in the Xingluokeng deposit were
361.3~683.2 and 539.6~816.7, respectively, which are higher than the value of air-saturated
water (ASW, 40Ar/36Ar = 295.5) and indicate the presence of radiogenic 40Ar derived
from mantle or crustal components. The radiogenic 40Ar* (40Ar* = 40Ar − [36Ar × 295.5])
could be estimated using the equation provided by [73]. The estimated 40Ar* of pyrite and
wolframite were 18.2~56.7% and 45.2~63.8%, respectively, and correspondingly, the 40Ar
from the air is 43.3%~81.8% and 36.2~54.8%, respectively.

The linear correlations between 3He/36Ar and 40Ar/36Ar (Figure 5), and between
3He/4He and 40Ar*/4He (Figure 6) indicated that the mineral-hosted volatiles from the
Xingluokeng deposit were mixtures of two fluids: a high 3He/4He-40Ar/36Ar-containing
mantle component and a low 3He/4He-40Ar/36Ar crustal component. Extrapolating the
trend in Figure 5 to pure ASW (3He/36Ar = 5 × 10−8) generated a 40Ar/36Ar value of 446,
which was a little higher than that of ASW (295.5), indicating that the crustal component
had near atmospheric 40Ar/36Ar. Therefore, the crustal fluid was probably modified air-
saturated water (MASW) with a crustal 3He/4He ratio and near atmospheric 40Ar/36Ar.
The other was a fluid exsolved from the W-associated granitic magma. This is consistent
with the conclusion of REE characteristics and H-O and Sr isotopes that the ore-forming
fluids dominantly originated from magma water and meteoric water involved in the late
mineralization stage [33].
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6.3. Role of Mantle Upwelling in Granite-Related W Mineralization in South China

The Xingluokeng W-Mo deposit had similar 3He/4He ratios with large or super-large
W deposits in the NLMB, such as the Xihuashan W deposit and Shizhuyuan W-Sn-Bi-Mo
deposit, indicating similar origin of noble gases in the ore-forming fluids of the W deposit in
NLMB and WYMB. However, they are far lower than that of the Zijinshan high-sulfidation
Cu-Au deposit [17] in the WYMB, which with significant mantle contributions, indicate
different geneses of W deposits and Cu-Au deposits in the WYMB. Most W deposits
have 3He/4He ratios lower than 2 Ra (Figure 6), indicating a primary contribution of the
crust-derived fluids in the genesis of ore deposits [24–26,74]. However, the He-Ar isotopic
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compositions showed that evident mantle contribution occurred during the metallogeny
of W deposits both in south China and the world (Figures 5 and 6). Especially, the high
3He/4He ratios (up to 4.53 Ra) of W deposits in the Yaoling-Meiziwo and Fuhezhong area
in south China and the high 3He/4He ratios (up to 6.7 Ra) in the Panasqueira W deposit
indicate a significant contribution of mantle-derived components [20,28,75].

Noble gases in the mantle are generally trapped in minerals. If there is no generation
and transportation of mantle magma, rare gases and volatiles in the mantle can hardly
reach the surface through diffusion, because the diffusion distance of volatiles is limited
even at the mantle temperatures [66]. Therefore, the occurrence of mantle-derived 3He
in the ore-forming fluids is often the reflection of the generation and the degassing of
mantle magma [76,77]. The mantle-derived components involved in the ore-forming fluid
indicate that intrusion of mantle-derived magma occurred during the formation of large-
scale tungsten mineralization and related Yanshanian granite in south China, which either
directly entered the magma during the remelting of the crust or was injected into the
magma chamber at the late stage of magma formation. However, the ore-related magma
properties are still dominated by crustal materials.

The dynamics of the Mesozoic diagenesis and mineralization in south China is
still debated, but it is generally accepted that the large-scale Mesozoic diagenesis and
mineralization in south China is closely related to the lithospheric extension [42,78–80].
The metallogeny of tungsten and related granites in south China are concentrated in
160–150 Ma [81,82]. It is suggested that from 160 to 150 Ma, south China underwent litho-
spheric extension-thinning coupled with mantle upwelling [43,83–86], which is closely
related with the tear-off or rollback of subducted Paleo-Pacific plate [82,87]. The deep
dynamics of mantle upwelling and the reasons for the difference in the intensity of crust–
mantle interactions in different areas need further study, but the upwelling of astheno-
spheric mantle and crust–mantle interactions between 160 Ma and 150 Ma are generally
recognized. The upwelling of mantle magma leads to the melting of the W-Sn-rich ancient
crust to form the initial magma (Figure 7), which is further enriched in the ore-forming flu-
ids during the process of magma crystallization and differentiation. The W-Sn-rich ancient
crust provides the mineralization material, and the upwelling mantle magma provides
heat and various proportions of materials or volatiles for the ore-forming magma and
hydrothermal system. The heat continuously provided from the mantle can reduce the
rate of magmatic condensation and facilitate sufficient differentiation of the magma so
that ore-forming elements are fully enriched into the ore-forming fluid. Most of the W de-
posits in south China span several Ma [7], much longer than individual intrusion-sustained
hydrothermal activity [20], and this may require continuous heating from the mantle.
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7. Conclusions

The 3He/4He ratios of the minerals form Xingluokeng deposit ranged from 0.14 to
1.01 Ra with an average of 0.58 Ra, and the 40Ar/36Ar ratio ranged from 361 to 817 with an
average of 578. The mantle-derived He was found to be added to the ore-forming fluid,
with an average proportion of 8.7%, up to 15.43%. The ore-forming fluid of the Xingluokeng
deposit was a mixture of the crustal fluid, which was probably modified air-saturated water
(MASW) with a crustal 3He/4He ratio and near atmospheric 40Ar/36Ar, and magmatic
fluid exsolved from the W-associated granitic magma. The Xingluokeng W-Mo polymetallic
deposit as well as other W deposits in NLMB and WYMB were formed under the Mesozoic
extensional tectonic background, where the upwelling mantle provided heat, volatiles, and
probably various degrees of materials to the W-related granites. The upwelling mantle
plays an important role in the formation of W deposits.
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