Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Global Navigation Satellite System Interferometry and Reflectometry (GNSS-IR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5626 KB  
Article
Improving GNSS-IR Sea Surface Height Accuracy Based on a New Ionospheric Stratified Elevation Angle Correction Model
by Jiadi Zhu, Wei Zheng, Yifan Shen, Keke Xu and Hebing Zhang
Remote Sens. 2024, 16(17), 3270; https://doi.org/10.3390/rs16173270 - 3 Sep 2024
Viewed by 2486
Abstract
Approximately 71% of the Earth’s surface is covered by vast oceans. With the exacerbation of global climate change, high-precision monitoring of sea surface height variations is of vital importance for constructing global ocean gravity fields and preventing natural disasters in the marine system. [...] Read more.
Approximately 71% of the Earth’s surface is covered by vast oceans. With the exacerbation of global climate change, high-precision monitoring of sea surface height variations is of vital importance for constructing global ocean gravity fields and preventing natural disasters in the marine system. Global Navigation Satellite System Interferometry Reflectometry (GNSS-IR) sea surface altimetry is a method of inferring sea surface height based on the signal-to-noise ratio of satellite signals. It enables the retrieval of sea surface height variations with high precision. However, navigation satellite signals are influenced by the ionosphere during propagation, leading to deviations in the measured values of satellite elevation angles from their true values, which significantly affects the accuracy of GNSS-IR sea surface altimetry. Based on this, the contents of this paper are as follows: Firstly, a new ionospheric stratified elevation angle correction model (ISEACM) was developed by integrating the International Reference Ionosphere Model (IRI) and ray tracing methods. This model aims to improve the accuracy of GNSS-IR sea surface altimetry by correcting the ionospheric refraction effects on satellite elevation angles. Secondly, four GNSS stations (TAR0, PTLD, GOM1, and TPW2) were selected globally, and the corrected sea surface height values obtained using ISEACM were compared with observed values from tide gauge stations. The calculated average Root Mean Square Error (RMSE) and Pearson Correlation Coefficient (PCC) were 0.20 m and 0.83, respectively, indicating the effectiveness of ISEACM in sea surface height retrieval. Thirdly, a comparative analysis was conducted between sea surface height retrieval before and after correction using ISEACM. The optimal RMSE and PCC values with tide gauge station observations were 0.15 m and 0.90, respectively, representing a 20.00% improvement in RMSE and a 4.00% improvement in correlation coefficient compared to traditional GNSS-IR retrieval heights. These experimental results demonstrate that correction with ISEACM can effectively enhance the precision of GNSS-IR sea surface altimetry, which is crucial for accurate sea surface height measurements. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Figure 1

13 pages, 2819 KB  
Article
A Correction Method of Height Variation Error Based on One SNR Arc Applied in GNSS–IR Sea-Level Retrieval
by Xiaolei Wang, Zijin Niu, Shu Chen and Xiufeng He
Remote Sens. 2022, 14(1), 11; https://doi.org/10.3390/rs14010011 - 21 Dec 2021
Cited by 17 | Viewed by 4281
Abstract
Sea-level monitoring is important for the safety of coastal cities and analysis of ocean and climate. Sea levels can be estimated based using the global navigation satellite system–interferometry reflectometry (GNSS–IR). The frequency in a signal-to-noise ratio (SNR) arc has been found to be [...] Read more.
Sea-level monitoring is important for the safety of coastal cities and analysis of ocean and climate. Sea levels can be estimated based using the global navigation satellite system–interferometry reflectometry (GNSS–IR). The frequency in a signal-to-noise ratio (SNR) arc has been found to be related to the height between the GNSS antenna and reflecting surface, which is called reflector height (RH, h). The height variation of the reflecting surface causes an error, and this error is the most significant error in the GNSS–IR sea-level retrieval. The key to the correction of height variation error lies in the determination of the RH variation rate h˙. The classical correction method determines h˙ based on tide analysis of a coarse RH series over a longer time period. Therefore, h˙ inherits errors in coarse RH series, which contains significant bias during a storm surge, and correcting this requires data accumulation. This study proposes a correction method of height variation error based on just one SNR arc based on wavelet analysis and least-square estimation. First, using wavelet analysis, instantaneous frequencies are extracted in one SNR arc; these frequencies are then converted to RH series. Second, using least-square estimation, h and h˙ are conjointly solved based on the RH series from wavelet analysis. Data of GNSS site HKQT located in Hong Kong, China, during a period of time that includes Typhoon Hato were used. The root-mean-square errors (RMSEs) of retrievals were 21.5 cm for L1, 9.5 cm for L2P, 9.3 cm for L2C, and 7.6 cm for L5 of GPS; 16.8 cm for L1C, 14.1 cm for L1P, 12.6 cm for L2C, and 10.7 cm for L2P of GLONASS; 15.7 cm for L1, 11.2 cm for L5, 12.2 cm for L7, and 9.6 cm for L8 of Galileo. Results showed this method can correct the height variation error based on just one SNR arc, can avoid the inheritance of errors, and can be used during periods of storm surge. Full article
Show Figures

Figure 1

17 pages, 6347 KB  
Article
Using BDS MEO and IGSO Satellite SNR Observations to Measure Soil Moisture Fluctuations Based on the Satellite Repeat Period
by Fei Shen, Mingming Sui, Yifan Zhu, Xinyun Cao, Yulong Ge and Haohan Wei
Remote Sens. 2021, 13(19), 3967; https://doi.org/10.3390/rs13193967 - 3 Oct 2021
Cited by 8 | Viewed by 3058
Abstract
Soil moisture is an important geophysical parameter for studying terrestrial water and energy cycles. It has been proven that Global Navigation Satellite System Interferometry Reflectometry (GNSS-IR) can be applied to monitor soil moisture. Unlike the Global Positioning System (GPS) that has only medium [...] Read more.
Soil moisture is an important geophysical parameter for studying terrestrial water and energy cycles. It has been proven that Global Navigation Satellite System Interferometry Reflectometry (GNSS-IR) can be applied to monitor soil moisture. Unlike the Global Positioning System (GPS) that has only medium earth orbit (MEO) satellites, the Beidou Navigation Satellite System (BDS) also has geosynchronous earth orbit (GEO) satellites and inclined geosynchronous satellite orbit (IGSO) satellites. Benefiting from the distribution of three different orbits, the BDS has better coverage in Asia than other satellite systems. Previous retrieval methods that have been confirmed on GPS cannot be directly applied to BDS MEO satellites due to different satellite orbits. The contribution of this study is a proposed multi-satellite soil moisture retrieval method for BDS MEO and IGSO satellites based on signal-to-noise ratio (SNR) observations. The method weakened the influence of environmental differences in different directions by considering satellite repeat period. A 30-day observation experiment was conducted in Fengqiu County, China and was used for verification. The satellite data collected were divided according to the satellite repeat period, and ensured the response data moved in the same direction. The experimental results showed that the BDS IGSO and MEO soil moisture estimation results had good correlations with the in situ soil moisture fluctuations. The BDS MEO B1I estimation results had the best performance; the estimation accuracy in terms of correlation coefficient was 0.9824, root mean square error (RMSE) was 0.0056 cm3cm−3, and mean absolute error (MAE) was 0.0040 cm3cm−3. The estimations of the BDS MEO B1I, MEO B2I, and IGSO B2I performed better than the GPS L1 and L2 estimations. For the BDS IGSO satellites, the B1I signal was more suitable for soil moisture retrieval than the B2I signal; the correlation coefficient was increased by 19.84%, RMSE was decreased by 42.64%, and MAE was decreased by 43.93%. In addition, the BDS MEO satellites could effectively capture sudden rainfall events. Full article
(This article belongs to the Special Issue Beidou/GNSS Precise Positioning and Atmospheric Modeling)
Show Figures

Figure 1

19 pages, 1385 KB  
Article
A Semi-Empirical SNR Model for Soil Moisture Retrieval Using GNSS SNR Data
by Mutian Han, Yunlong Zhu, Dongkai Yang, Xuebao Hong and Shuhui Song
Remote Sens. 2018, 10(2), 280; https://doi.org/10.3390/rs10020280 - 11 Feb 2018
Cited by 35 | Viewed by 6379
Abstract
The Global Navigation Satellite System-Interferometry and Reflectometry (GNSS-IR) technique on soil moisture remote sensing was studied. A semi-empirical Signal-to-Noise Ratio (SNR) model was proposed as a curve-fitting model for SNR data routinely collected by a GNSS receiver. This model aims at reconstructing the [...] Read more.
The Global Navigation Satellite System-Interferometry and Reflectometry (GNSS-IR) technique on soil moisture remote sensing was studied. A semi-empirical Signal-to-Noise Ratio (SNR) model was proposed as a curve-fitting model for SNR data routinely collected by a GNSS receiver. This model aims at reconstructing the direct and reflected signal from SNR data and at the same time extracting frequency and phase information that is affected by soil moisture as proposed by K. M. Larson et al. This is achieved empirically through approximating the direct and reflected signal by a second-order and fourth-order polynomial, respectively, based on the well-established SNR model. Compared with other models (K. M. Larson et al., T. Yang et al.), this model can improve the Quality of Fit (QoF) with little prior knowledge needed and can allow soil permittivity to be estimated from the reconstructed signals. In developing this model, we showed how noise affects the receiver SNR estimation and thus the model performance through simulations under the bare soil assumption. Results showed that the reconstructed signals with a grazing angle of 5°–15° were better for soil moisture retrieval. The QoF was improved by around 45%, which resulted in better estimation of the frequency and phase information. However, we found that the improvement on phase estimation could be neglected. Experimental data collected at Lamasquère, France, were also used to validate the proposed model. The results were compared with the simulation and previous works. It was found that the model could ensure good fitting quality even in the case of irregular SNR variation. Additionally, the soil moisture calculated from the reconstructed signals was about 15% closer in relation to the ground truth measurements. A deeper insight into the Larson model and the proposed model was given at this stage, which formed a possible explanation of this fact. Furthermore, frequency and phase information extracted using this model were also studied for their capability to monitor soil moisture variation. Finally, phenomena such as retrieval ambiguity and error sensitivity were stated and discussed. Full article
(This article belongs to the Special Issue Soil Moisture Remote Sensing Across Scales)
Show Figures

Figure 1

Back to TopTop