error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Girard’s reagent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1979 KB  
Article
On-Tissue Chemical Derivatization for Mass Spectrometry Imaging of Fatty Acids with Enhanced Detection Sensitivity
by Malik Ebbini, Zicong Wang, Hua Zhang, Kelly H. Lu, Penghsuan Huang, Cameron J. Kaminsky, Luigi Puglielli and Lingjun Li
Biomolecules 2025, 15(3), 366; https://doi.org/10.3390/biom15030366 - 3 Mar 2025
Cited by 2 | Viewed by 3084
Abstract
The dysregulation of fatty acid (FA) metabolism is linked to various brain diseases, including Alzheimer’s disease (AD). Mass spectrometry imaging (MSI) allows for the visualization of FA distribution in brain tissues but is often limited by low detection sensitivity and high background interference. [...] Read more.
The dysregulation of fatty acid (FA) metabolism is linked to various brain diseases, including Alzheimer’s disease (AD). Mass spectrometry imaging (MSI) allows for the visualization of FA distribution in brain tissues but is often limited by low detection sensitivity and high background interference. In this work, we introduce a novel on-tissue chemical derivatization method for FAs using Girard’s Reagent T (GT) as a derivatization reagent combined with 2-chloro-1-methylpyridinium iodide (CMPI) as a coupling reagent and triethylamine (TEA) to provide a basic environment for the reaction. This method significantly enhances the detection sensitivity of FAs, achieving a 1000-fold improvement over traditional negative ion mode analysis. Our method enabled us to observe a notable depletion of oleic acid in the corpus callosum of AD mouse model brain tissue sections compared to wild-type control brain tissue sections. The reliability of our method was validated using LC-MS/MS, which confirmed the presence of eight distinct GT-labeled FAs across various tissue locations. This approach not only improves FA detection in brain tissues but also has the potential to provide a deeper understanding of FA dynamics associated with AD pathogenesis. Full article
(This article belongs to the Special Issue Mass Spectrometry Imaging in Neuroscience)
Show Figures

Graphical abstract

17 pages, 4807 KB  
Article
The Development of a Selective Colorimetric Sensor for Cu2+ and Zn2+ in Mineral Supplement with Application of a Smartphone Paper-Based Assay of Cu2+ in Water Samples
by Mahmoud El-Maghrabey, Shōta Seino, Naoya Kishikawa and Naotaka Kuroda
Sensors 2024, 24(23), 7844; https://doi.org/10.3390/s24237844 - 8 Dec 2024
Cited by 3 | Viewed by 2297
Abstract
Herein, we developed a colorimetric method for the determination of Cu2+ and Zn2+ using NBD-G as a novel selective metal sensor. NBD-G was easily synthesized by a nucleophilic substitution reaction between 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) and Girard’s Reagent P. The NBD-G solution is [...] Read more.
Herein, we developed a colorimetric method for the determination of Cu2+ and Zn2+ using NBD-G as a novel selective metal sensor. NBD-G was easily synthesized by a nucleophilic substitution reaction between 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) and Girard’s Reagent P. The NBD-G solution is yellow, but when it reacts with Cu2+ and Zn2+, its color changes selectively to red (510 nm) and orange (480 nm), respectively. NBD-G was used as a sensor for Cu2+ and Zn2+, showing a high sensitivity down to 0.77 µM for Cu2+ and 1.66 µM for Zn2+. NBD-G could determine both metals simultaneously; thus, it was applied to determine them in multimineral supplements, which showed excellent recoveries. Next, a filter paper impregnated with NBD-G was prepared as a test paper, and a simple, selective, and rapid onsite method for quantifying Cu2+ was developed as, interestingly, the paper showed no change upon the addition of Zn2+. Next, Cu2+ could be quantified with high selectivity and accuracy by photographing the color change with a smartphone camera and processing the image with Image J. The detection limit for Cu2+ using this method was 3.9 µM. Finally, the NBD-G test paper method was able to satisfactorily quantify Cu2+ spiked into the rainwater. Full article
(This article belongs to the Special Issue Innovative Sensors and Embedded Sensor Systems for Food Analysis)
Show Figures

Figure 1

20 pages, 4639 KB  
Article
Customising Sustainable Bio-Based Polyelectrolytes: Introduction of Charged and Hydrophobic Groups in Cellulose
by Solange Magalhães, María José Aliaño-González, Pedro F. Cruz, Rose Rosenberg, Dirk Haffke, Magnus Norgren, Luís Alves, Bruno Medronho and Maria da Graça Rasteiro
Polymers 2024, 16(22), 3105; https://doi.org/10.3390/polym16223105 - 5 Nov 2024
Cited by 4 | Viewed by 1958
Abstract
Cellulose has been widely explored as a sustainable alternative to synthetic polymers in industrial applications, thanks to its advantageous properties. The introduction of chemical modifications on cellulose structure, focusing on cationic and hydrophobic modifications, can enhance its functionality and expand the range of [...] Read more.
Cellulose has been widely explored as a sustainable alternative to synthetic polymers in industrial applications, thanks to its advantageous properties. The introduction of chemical modifications on cellulose structure, focusing on cationic and hydrophobic modifications, can enhance its functionality and expand the range of applications. In the present work, cationization was carried out through a two-step process involving sodium periodate oxidation followed by a reaction with the Girard T reagent, yielding a degree of substitution for cationic groups (DScationic) between 0.3 and 1.8. Hydrophobic modification was achieved via esterification with fatty acids derived from commercial plant oils, using an enzyme-assisted, environmentally friendly method. Lipase-catalysed hydrolysis, optimised at 0.25% enzyme concentration and with a 1 h reaction time, produced an 84% yield of fatty acids, confirmed by FTIR and NMR analyses. The degree of substitution for hydrophobic groups (DShydrophobic) ranged from 0.09 to 0.66. The molecular weight (MW) of the modified cellulose derivatives varied from 1.8 to 141 kDa. This dual modification strategy enables the creation of cellulose-based polymers with controlled electrostatic and hydrophobic characteristics, customisable for specific industrial applications. Our approach presents a sustainable and flexible solution for developing cellulose derivatives tailored to diverse industrial needs. Full article
(This article belongs to the Special Issue Cellulose-Based Polymeric Materials)
Show Figures

Figure 1

18 pages, 1718 KB  
Article
Biological Activity Evaluation of Phenolic Isatin-3-Hydrazones Containing a Quaternary Ammonium Center of Various Structures
by Margarita Neganova, Yulia Aleksandrova, Alexandra Voloshina, Anna Lyubina, Nurbol Appazov, Sholpan Yespenbetova, Zulfiia Valiullina, Aleksandr Samorodov, Sergey Bukharov, Elmira Gibadullina, Anipa Tapalova and Andrei Bogdanov
Int. J. Mol. Sci. 2024, 25(20), 11130; https://doi.org/10.3390/ijms252011130 - 17 Oct 2024
Cited by 2 | Viewed by 2428
Abstract
A series of new isatin-3-hydrazones bearing different ammonium fragments was synthesized by a simple and easy work-up reaction of Girard’s reagents analogs with 1-(3,5-di-tert-butyl-4-hydroxybenzyl)isatin. All derivatives have been shown to have antioxidant properties. In terms of bactericidal activity against gram-positive bacteria, [...] Read more.
A series of new isatin-3-hydrazones bearing different ammonium fragments was synthesized by a simple and easy work-up reaction of Girard’s reagents analogs with 1-(3,5-di-tert-butyl-4-hydroxybenzyl)isatin. All derivatives have been shown to have antioxidant properties. In terms of bactericidal activity against gram-positive bacteria, including methicillin-resistant strains of Staphylococcus aureus, the best compounds are 3a, 3e, and 3m, bearing octyl, acetal, and brucine ammonium centers, respectively. In addition, brucine and quinine derivatives 3l, and 3j exhibit platelet antiaggregation activity at the level of acetylsalicylic acid, and this series of isatin derivatives does not adversely affect the hemostasis system as a whole. Thus, all the obtained results can lay the groundwork for future pharmaceutical developments for the creation of effective antibacterial drugs with reduced systemic toxicity due to the presence of antioxidant properties. Full article
Show Figures

Figure 1

11 pages, 1813 KB  
Article
Enhanced Thermal and Mechanical Properties of Cardanol Epoxy/Clay-Based Nanocomposite through Girard’s Reagent
by Ji Xu, Lingxiao Jia, Qixin Lan and Daheng Wu
Polymers 2024, 16(11), 1528; https://doi.org/10.3390/polym16111528 - 29 May 2024
Cited by 1 | Viewed by 1781
Abstract
The green and environmentally friendly cardanol epoxy resin has a bright application prospect, but its insufficient thermal/mechanical properties seriously hinder its application. Adding nanoclay to polymer matrix is an effective method to enhance the thermal/mechanical properties of material, but the dispersion and compatibility [...] Read more.
The green and environmentally friendly cardanol epoxy resin has a bright application prospect, but its insufficient thermal/mechanical properties seriously hinder its application. Adding nanoclay to polymer matrix is an effective method to enhance the thermal/mechanical properties of material, but the dispersion and compatibility of nanoclay in epoxy resin remain to be solved. In this work, active Girard’s reagent clay (PG-clay) and non-active Girard’s reagent clay (NG-clay) were prepared by using acethydrazide trimethylammonium chloride (Girard’s reagent) as the modifier, and cardanol epoxy resin/G-clay nanocomposites were synthesized by the “clay slurry composite method”. The results showed that both PG-clay and NG-clay were dispersed in the epoxy matrix in the form of random exfoliation/intercalation, which effectively improved the thermal/mechanical properties of the composites. Tg of the cardanol epoxy resin has raised from 19.8 °C to 38.1 °C (4 wt.% PG-clay). When the mass fraction of clay is 4%, the tensile strength of the non-reactive NG-clay increases by 128%, and the elongation at break also increases by 101%. Simultaneously, the active PG-clay can participate in the curing reaction of epoxy resin due to the amino group, forming a chemical bond between the clay layer and the resin matrix and establishing a strong interfacial force. The tensile strength of the composite is increased by 970%, and the elongation at break is also increased by 428%. This research demonstrates that the cardanol epoxy resin/G-clay nanocomposite stands as a highly promising candidate for bio-based epoxy resin materials. Full article
(This article belongs to the Special Issue New Progress in Polymer Self-Assembly)
Show Figures

Figure 1

23 pages, 4911 KB  
Article
Anticancer and Antiphytopathogenic Activity of Fluorinated Isatins and Their Water-Soluble Hydrazone Derivatives
by Andrei V. Bogdanov, Margarita Neganova, Alexandra Voloshina, Anna Lyubina, Syumbelya Amerhanova, Igor A. Litvinov, Olga Tsivileva, Nurgali Akylbekov, Rakhmetulla Zhapparbergenov, Zulfiia Valiullina, Alexandr V. Samorodov and Igor Alabugin
Int. J. Mol. Sci. 2023, 24(20), 15119; https://doi.org/10.3390/ijms242015119 - 12 Oct 2023
Cited by 8 | Viewed by 3201
Abstract
A series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (3a), chloro (3b), or bis-fluoro (3d) substitution on the biological activity of [...] Read more.
A series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (3a), chloro (3b), or bis-fluoro (3d) substitution on the biological activity of this pharmacophore. Furthermore, the new isatins could be converted into water-soluble isatin-3-hydrazones using their acid-catalyzed reaction with Girard’s reagent P and its dimethyl analog. The cytotoxic action of these substances is associated with the induction of apoptosis caused by mitochondrial membrane dissipation and stimulated reactive oxygen species production in tumor cells. In addition, compounds 3a and 3b exhibit platelet antiaggregation activity at the level of acetylsalicylic acid, and the whole series of fluorine-containing isatins does not adversely affect the hemostasis system as a whole. Among the new water-soluble pyridinium isatin-3-acylhydrazones, compounds 7c and 5c,e exhibit the highest antagonistic effect against phytopathogens of bacterial and fungal origin and can be considered useful leads for combating plant diseases. Full article
(This article belongs to the Special Issue Development and Synthesis of Biologically Active Compounds)
Show Figures

Figure 1

28 pages, 3724 KB  
Article
Hexavalent Chromium Removal from Industrial Wastewater by Adsorption and Reduction onto Cationic Cellulose Nanocrystals
by Francisco de Borja Ojembarrena, Hassan Sammaraie, Cristina Campano, Angeles Blanco, Noemi Merayo and Carlos Negro
Nanomaterials 2022, 12(23), 4172; https://doi.org/10.3390/nano12234172 - 24 Nov 2022
Cited by 25 | Viewed by 3527
Abstract
Cationic cellulose nanocrystals (CCNC) are lignocellulosic bio-nanomaterials that present large, specific areas rich with active surface cationic groups. This study shows the adsorption removal of hexavalent chromium (Cr(VI)) from industrial wastewaters by the CCNC. The CCNC were synthetized through periodate oxidation and Girard’s [...] Read more.
Cationic cellulose nanocrystals (CCNC) are lignocellulosic bio-nanomaterials that present large, specific areas rich with active surface cationic groups. This study shows the adsorption removal of hexavalent chromium (Cr(VI)) from industrial wastewaters by the CCNC. The CCNC were synthetized through periodate oxidation and Girard’s reagent-T cationization. The high value of CCNCs cationic groups and anionic demand reveal probable nanocrystal-Cr(VI) attraction. Adsorption was performed with synthetic Cr(VI) water at different pH, dosage, Cr(VI) concentration and temperature. Fast removal of Cr(VI) was found while operating at pH 3 and 100 mg·L−1 of dosage. Nevertheless, a first slower complete removal of chromium was achieved by a lower CCNC dosage (40 mg·L−1). Cr(VI) was fully converted by CCNC into less-toxic trivalent species, kept mainly attached to the material surface. The maximum adsorption capacity was 44 mg·g−1. Two mechanisms were found for low chromium concentrations (Pseudo-first and pseudo-second kinetic models and continuous growth multi-step intraparticle) and for high concentrations (Elovich model and sequential fast growth-plateau-slow growth intraparticle steps). The Sips model was the best-fitting isotherm. Isotherm thermodynamic analysis indicated a dominant physical sorption. The Arrhenius equation revealed an activation energy between physical and chemical adsorption. CCNC application at selected conditions in industrial wastewater achieved a legal discharge limit of 40 min. Full article
Show Figures

Figure 1

18 pages, 3965 KB  
Article
Assessment of the Performance of Cationic Cellulose Derivatives as Calcium Carbonate Flocculant for Papermaking
by Jorge F. S. Pedrosa, Luís Alves, Carlos P. Neto, Maria G. Rasteiro and Paulo J. T. Ferreira
Polymers 2022, 14(16), 3309; https://doi.org/10.3390/polym14163309 - 14 Aug 2022
Cited by 12 | Viewed by 3407
Abstract
Cationic polyacrylamides (CPAMs) are usually used as filler retention agents in papermaking formulations. However, increasing environmental restrictions and their non-renewable origin have driven research into bio-based alternatives. In this context, cationic lignocellulosic derivatives have been attracting considerable research interest as a potential substitute. [...] Read more.
Cationic polyacrylamides (CPAMs) are usually used as filler retention agents in papermaking formulations. However, increasing environmental restrictions and their non-renewable origin have driven research into bio-based alternatives. In this context, cationic lignocellulosic derivatives have been attracting considerable research interest as a potential substitute. In this work, distinct cationic celluloses with degrees of substitution of between 0.02 and 1.06 and with distinct morphological properties were synthesized via the cationization of bleached eucalyptus kraft pulp, using a direct cationization with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) or a two-step cationization, where the cellulose was first oxidized to form dialdehyde cellulose and was then made to react with Girard’s reagent T (GT). Fibrillated samples were produced by subjecting some samples to a high-pressure homogenization treatment. The obtained samples were evaluated regarding their potential to flocculate and retain precipitated calcium carbonate (PCC), and their performance was compared to that of a commercial CPAM. The cationic fibrillated celluloses, with a degree of substitution of ca. 0.13–0.16, exhibited the highest flocculation performance of all the cationic celluloses and were able to increase the filler retention from 43% (with no retention agent) to ca. 61–62% (with the addition of 20 mg/g of PCC). Although it was not possible to achieve the performance of CPAM (filler retention of 73% with an addition of 1 mg/g of PCC), the results demonstrated the potential of cationic cellulose derivatives for use as bio-based retention agents. Full article
(This article belongs to the Special Issue Improvement in Physical Properties of Paper and Natural Fibers)
Show Figures

Figure 1

16 pages, 1906 KB  
Article
Reductive Amination for LC–MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish
by Fedor Kryuchkov, Alison Robertson, Elizabeth M. Mudge, Christopher O. Miles, Soetkien Van Gothem and Silvio Uhlig
Toxins 2022, 14(6), 399; https://doi.org/10.3390/toxins14060399 - 9 Jun 2022
Cited by 6 | Viewed by 3600
Abstract
Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, [...] Read more.
Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) or high-resolution MS (LC–HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC–MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard’s reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC–MS/MS and LC–HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1–GRT derivatization strategy mitigates many of the shortcomings of current LC–MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes. Full article
(This article belongs to the Special Issue Ciguatoxins 2022–2023)
Show Figures

Figure 1

18 pages, 2519 KB  
Article
Synthesis, Characterization, Catalytic Activity, and DFT Calculations of Zn(II) Hydrazone Complexes
by Temiloluwa T. Adejumo, Nikolaos V. Tzouras, Leandros P. Zorba, Dušanka Radanović, Andrej Pevec, Sonja Grubišić, Dragana Mitić, Katarina K. Anđelković, Georgios C. Vougioukalakis, Božidar Čobeljić and Iztok Turel
Molecules 2020, 25(18), 4043; https://doi.org/10.3390/molecules25184043 - 4 Sep 2020
Cited by 66 | Viewed by 7346
Abstract
Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS) [...] Read more.
Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (μ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule. Full article
Show Figures

Graphical abstract

14 pages, 1968 KB  
Article
Application of Deep Eutectic Solvents and Ionic Liquids in the Extraction of Catechins from Tea
by Sylwia Bajkacz, Jakub Adamek and Anna Sobska
Molecules 2020, 25(14), 3216; https://doi.org/10.3390/molecules25143216 - 14 Jul 2020
Cited by 23 | Viewed by 5745
Abstract
This work aimed to comprehensively evaluate the potential and effectiveness of deep eutectic solvents (DESs) in the extraction of seven catechins from various tea samples. Different combinations of DES were used, consisting of Girard’s reagent T (GrT) in various mixing ratios with organic [...] Read more.
This work aimed to comprehensively evaluate the potential and effectiveness of deep eutectic solvents (DESs) in the extraction of seven catechins from various tea samples. Different combinations of DES were used, consisting of Girard’s reagent T (GrT) in various mixing ratios with organic acids and choline chloride. The yields of the DES extractions were compared with those from ionic liquids and conventional solvent. DES contained malic acid, as the hydrogen bond donors showed a good solubility of catechins with different polarities. In the second part of the study, a solid-phase extraction (SPE) method was applied to the extraction of catechins from tea infusions. The method was applied to the determination of selected catechins in tea leaves and tea infusions. Furthermore, we demonstrated that the proposed procedure works well in the simultaneous monitoring of these polyphenols, which makes it a useful tool in the quality control of tea. Full article
Show Figures

Graphical abstract

20 pages, 5636 KB  
Communication
Developing an Enzyme-Assisted Derivatization Method for Analysis of C27 Bile Alcohols and Acids by Electrospray Ionization-Mass Spectrometry
by Jonas Abdel-Khalik, Peter J. Crick, Eylan Yutuc, Yuqin Wang and William J. Griffiths
Molecules 2019, 24(3), 597; https://doi.org/10.3390/molecules24030597 - 7 Feb 2019
Cited by 3 | Viewed by 5859
Abstract
Enzyme-assisted derivatization for sterol analysis (EADSA) is a technology designed to enhance sensitivity and specificity for sterol analysis using electrospray ionization–mass spectrometry. To date it has only been exploited on sterols with a 3β-hydroxy-5-ene or 3β-hydroxy-5α-hydrogen structure, using bacterial cholesterol oxidase enzyme to [...] Read more.
Enzyme-assisted derivatization for sterol analysis (EADSA) is a technology designed to enhance sensitivity and specificity for sterol analysis using electrospray ionization–mass spectrometry. To date it has only been exploited on sterols with a 3β-hydroxy-5-ene or 3β-hydroxy-5α-hydrogen structure, using bacterial cholesterol oxidase enzyme to convert the 3β-hydroxy group to a 3-oxo group for subsequent derivatization with the positively charged Girard hydrazine reagents, or on substrates with a native oxo group. Here we describe an extension of the technology by substituting 3α-hydroxysteroid dehydrogenase (3α-HSD) for cholesterol oxidase, making the method applicable to sterols with a 3α-hydroxy-5β-hydrogen structure. The 3α-HSD enzyme works efficiently on bile alcohols and bile acids with this stereochemistry. However, as found by others, derivatization of the resultant 3-oxo group with a hydrazine reagent does not go to completion in the absence of a conjugating double bond in the sterol structure. Nevertheless, Girard P derivatives of bile alcohols and C27 acids give an intense molecular ion ([M]+) upon electrospray ionization and informative fragmentation spectra. The method shows promise for analysis of bile alcohols and 3α-hydroxy-5β-C27-acids, enhancing the range of sterols that can be analyzed at high sensitivity in sterolomic studies. Full article
Show Figures

Graphical abstract

13 pages, 2204 KB  
Article
Hydrogels of Polycationic Acetohydrazone-Modified Phosphorus Dendrimers for Biomedical Applications: Gelation Studies and Nucleic Acid Loading
by Evgeny K. Apartsin, Alina E. Grigoryeva, Audrey Malrin-Fournol, Elena I. Ryabchikova, Alya G. Venyaminova, Serge Mignani, Anne-Marie Caminade and Jean-Pierre Majoral
Pharmaceutics 2018, 10(3), 120; https://doi.org/10.3390/pharmaceutics10030120 - 6 Aug 2018
Cited by 12 | Viewed by 3924
Abstract
In this work, we report the assemblage of hydrogels from phosphorus dendrimers in the presence of biocompatible additives and the study of their interactions with nucleic acids. As precursors for hydrogels, phosphorus dendrimers of generations 1–3 based on the cyclotriphosphazene core and bearing [...] Read more.
In this work, we report the assemblage of hydrogels from phosphorus dendrimers in the presence of biocompatible additives and the study of their interactions with nucleic acids. As precursors for hydrogels, phosphorus dendrimers of generations 1–3 based on the cyclotriphosphazene core and bearing ammonium or pyridinium acetohydrazones (Girard reagents) on the periphery have been synthesized. The gelation was done by the incubation of dendrimer solutions in water or phosphate-buffered saline in the presence of biocompatible additives (glucose, glycine or polyethylene glycol) to form physical gels. Physical properties of gels have been shown to depend on the gelation conditions. Transmission electron microscopy revealed structural units and well-developed network structures of the hydrogels. The hydrogels were shown to bind nucleic acids efficiently. In summary, hydrogels of phosphorus dendrimers represent a useful tool for biomedical applications. Full article
(This article belongs to the Special Issue Dendrimers in Nanomedical Applications: Update and Future Directions)
Show Figures

Graphical abstract

Back to TopTop