Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = FreeSurfer 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 898 KB  
Article
Prenatal Vitamin D, Multivitamin, and Folic Acid Supplementation and Brain Structure in Children with ADHD and ASD Traits: The Generation R Study
by Daan van Rooij, Yuchan Mou, Tonya White, Trudy Voortman, Pauline W. Jansen and Jan K. Buitelaar
Nutrients 2025, 17(18), 2979; https://doi.org/10.3390/nu17182979 - 17 Sep 2025
Viewed by 3331
Abstract
Background/Objectives: Maternal vitamin supplementation (including folic acid, vitamin D, and multivitamin supplements) during pregnancy may lower the likelihood of neurodevelopmental disorders in offspring. This study examines the associations between maternal vitamin suppletion during pregnancy and morphological patterns in offsprings’ brain structure and traits [...] Read more.
Background/Objectives: Maternal vitamin supplementation (including folic acid, vitamin D, and multivitamin supplements) during pregnancy may lower the likelihood of neurodevelopmental disorders in offspring. This study examines the associations between maternal vitamin suppletion during pregnancy and morphological patterns in offsprings’ brain structure and traits of Autism Spectrum Disorder (ASD) and Attention-Deficit Hyperactivity Disorder (ADHD) in a large population-based study of child development. Methods: The study cohort included a total of 3937 children (aged 9–11) participating in the Generation R cohort in Rotterdam, the Netherlands. Maternal vitamin D and folateserum levels, multivitamin supplement use, and overall dietary quality (as assessed by the Food Frequency Questionnaire, FFQ) during pregnancy were used as predictors. T1 structural MRI scans were acquired and segmented using Freesurfer to assess brain morphometry. Cortical and subcortical brain volumes of children were separated into four independent components and used as mediators. ADHD and ASD traits, as measured by parent-completed questionnaires (Child Behavior CheckList and Social Responsiveness Scale, respectively) were used as outcome variables. Results: Results show that (1) maternal vitamin D, multivitamin supplementation, and better diet quality were associated with fewer ADHD or ASD traits in the offspring; (2) vitamin D and diet quality were associated with larger-volume childhood brain components; (3) larger-volume brain components were associated with fewer ADHD and ASD traits; (4) part of the association between dietary factors in pregnancy and offspring ADHD and ASD traits was mediated through the brain volumes of the children. Conclusions: Though all observed effect sizes were small, further population-based research should be performed to further delineate the effects of gestational multivitamin and vitamin D exposure and investigate whether this may be an avenue for preventive interventions. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

13 pages, 1533 KB  
Article
Development and Validation of an MRI-Based Brain Volumetry Model Predicting Poor Psychomotor Outcomes in Preterm Neonates
by Joonsik Park, Jungho Han, In Gyu Song, Ho Seon Eun, Min Soo Park, Beomseok Sohn and Jeong Eun Shin
J. Clin. Med. 2025, 14(6), 1996; https://doi.org/10.3390/jcm14061996 - 15 Mar 2025
Viewed by 1097
Abstract
Background/Objectives: Infant FreeSurfer was introduced to address robust quantification and segmentation in the infant brain. The purpose of this study is to develop a new model for predicting the long-term neurodevelopmental outcomes of very low birth weight preterm infants using automated volumetry [...] Read more.
Background/Objectives: Infant FreeSurfer was introduced to address robust quantification and segmentation in the infant brain. The purpose of this study is to develop a new model for predicting the long-term neurodevelopmental outcomes of very low birth weight preterm infants using automated volumetry extracted from term-equivalent age (TEA) brain MRIs, diffusion tensor imaging, and clinical information. Methods: Preterm infants hospitalized at Severance Children’s Hospital, born between January 2012 and December 2019, were consecutively enrolled. Inclusion criteria included infants with birth weights under 1500 g who underwent both TEA MRI and Bayley Scales of Infant and Toddler Development, Second Edition (BSID-II), assessments at 18–24 months of corrected age (CA). Brain volumetric information was derived from Infant FreeSurfer using 3D T1WI of TEA MRI. Mean and standard deviation of fractional anisotropy of posterior limb of internal capsules were measured. Demographic information and comorbidities were used as clinical information. Study cohorts were split into training and test sets with a 7:3 ratio. Random forest and logistic regression models were developed to predict low Psychomotor Development Index (PDI < 85) and low Mental Development Index (MDI < 85), respectively. Performance metrics, including the area under the receiver operating curve (AUROC), accuracy, sensitivity, precision, and F1 score, were evaluated in the test set. Results: A total of 150 patient data were analyzed. For predicting low PDI, the random forest classifier was employed. The AUROC values for models using clinical variables, MR volumetry, and both clinical variables and MR volumetry were 0.8435, 0.7281, and 0.9297, respectively. To predict low MDI, a logistic regression model was chosen. The AUROC values for models using clinical variables, MR volumetry, and both clinical variables and MR volumetry were 0.7483, 0.7052, and 0.7755, respectively. The model incorporating both clinical variables and MR volumetry exhibited the highest AUROC values for both PDI and MDI prediction. Conclusions: This study presents a promising new prediction model utilizing an automated volumetry algorithm to distinguish long-term psychomotor developmental outcomes in preterm infants. Further research and validation are required for its clinical application. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

27 pages, 17814 KB  
Article
Elucidating Multimodal Imaging Patterns in Accelerated Brain Aging: Heterogeneity through a Discriminant Analysis Approach Using the UK Biobank Dataset
by Lingyu Liu, Lan Lin, Shen Sun and Shuicai Wu
Bioengineering 2024, 11(2), 124; https://doi.org/10.3390/bioengineering11020124 - 26 Jan 2024
Cited by 4 | Viewed by 3780
Abstract
Accelerated brain aging (ABA) intricately links with age-associated neurodegenerative and neuropsychiatric diseases, emphasizing the critical need for a nuanced exploration of heterogeneous ABA patterns. This investigation leveraged data from the UK Biobank (UKB) for a comprehensive analysis, utilizing structural magnetic resonance imaging (sMRI), [...] Read more.
Accelerated brain aging (ABA) intricately links with age-associated neurodegenerative and neuropsychiatric diseases, emphasizing the critical need for a nuanced exploration of heterogeneous ABA patterns. This investigation leveraged data from the UK Biobank (UKB) for a comprehensive analysis, utilizing structural magnetic resonance imaging (sMRI), diffusion magnetic resonance imaging (dMRI), and resting-state functional magnetic resonance imaging (rsfMRI) from 31,621 participants. Pre-processing employed tools from the FMRIB Software Library (FSL, version 5.0.10), FreeSurfer, DTIFIT, and MELODIC, seamlessly integrated into the UKB imaging processing pipeline. The Lasso algorithm was employed for brain-age prediction, utilizing derived phenotypes obtained from brain imaging data. Subpopulations of accelerated brain aging (ABA) and resilient brain aging (RBA) were delineated based on the error between actual age and predicted brain age. The ABA subgroup comprised 1949 subjects (experimental group), while the RBA subgroup comprised 3203 subjects (control group). Semi-supervised heterogeneity through discriminant analysis (HYDRA) refined and characterized the ABA subgroups based on distinctive neuroimaging features. HYDRA systematically stratified ABA subjects into three subtypes: SubGroup 2 exhibited extensive gray-matter atrophy, distinctive white-matter patterns, and unique connectivity features, displaying lower cognitive performance; SubGroup 3 demonstrated minimal atrophy, superior cognitive performance, and higher physical activity; and SubGroup 1 occupied an intermediate position. This investigation underscores pronounced structural and functional heterogeneity in ABA, revealing three subtypes and paving the way for personalized neuroprotective treatments for age-related neurological, neuropsychiatric, and neurodegenerative diseases. Full article
(This article belongs to the Special Issue Biomedical Application of Big Data and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 1320 KB  
Article
Abnormalities of Hippocampal Subfield and Amygdalar Nuclei Volumes and Clinical Correlates in Behavioral Variant Frontotemporal Dementia with Obsessive–Compulsive Behavior—A Pilot Study
by Mu-N Liu, Li-Yu Hu, Chia-Fen Tsai, Chen-Jee Hong, Yuan-Hwa Chou, Chiung-Chih Chang, Kai-Chun Yang, Zi-Hong You and Chi Ieong Lau
Brain Sci. 2023, 13(11), 1582; https://doi.org/10.3390/brainsci13111582 - 11 Nov 2023
Cited by 1 | Viewed by 2984
Abstract
(1) Background: The hippocampus (HP) and amygdala are essential structures in obsessive–compulsive behavior (OCB); however, the specific role of the HP in patients with behavioral variant frontotemporal dementia (bvFTD) and OCB remains unclear. (2) Objective: We investigated the alterations of hippocampal and amygdalar [...] Read more.
(1) Background: The hippocampus (HP) and amygdala are essential structures in obsessive–compulsive behavior (OCB); however, the specific role of the HP in patients with behavioral variant frontotemporal dementia (bvFTD) and OCB remains unclear. (2) Objective: We investigated the alterations of hippocampal and amygdalar volumes in patients with bvFTD and OCB and assessed the correlations of clinical severity with hippocampal subfield and amygdalar nuclei volumes in bvFTD patients with OCB. (3) Materials and methods: Eight bvFTD patients with OCB were recruited and compared with eight age- and sex-matched healthy controls (HCs). Hippocampal subfield and amygdalar nuclei volumes were analyzed automatically using a 3T magnetic resonance image and FreeSurfer v7.1.1. All participants completed the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS), Neuropsychiatric Inventory (NPI), and Frontal Behavioral Inventory (FBI). (4) Results: We observed remarkable reductions in bilateral total hippocampal volumes. Compared with the HCs, reductions in the left hippocampal subfield volume over the cornu ammonis (CA)1 body, CA2/3 body, CA4 body, granule cell layer, and molecular layer of the dentate gyrus (GC-ML-DG) body, molecular layer of the HP body, and hippocampal tail were more obvious in patients with bvFTD and OCB. Right subfield volumes over the CA1 body and molecular layer of the HP body were more significantly reduced in bvFTD patients with OCB than in those in HCs. We observed no significant difference in amygdalar nuclei volume between the groups. Among patients with bvFTD and OCB, Y-BOCS score was negatively correlated with left CA2/3 body volume (τb = −0.729, p < 0.001); total NPI score was negatively correlated with left GC-ML-DG body (τb = −0.648, p = 0.001) and total bilateral hippocampal volumes (left, τb = −0.629, p = 0.002; right, τb = −0.455, p = 0.023); and FBI score was negatively correlated with the left molecular layer of the HP body (τb = −0.668, p = 0.001), CA4 body (τb = −0.610, p = 0.002), and hippocampal tail volumes (τb = −0.552, p < 0.006). Mediation analysis confirmed these subfield volumes as direct biomarkers for clinical severity, independent of medial and lateral orbitofrontal volumes. (5) Conclusions: Alterations in hippocampal subfield volumes appear to be crucial in the pathophysiology of OCB development in patients with bvFTD. Full article
(This article belongs to the Special Issue New Advances in Alzheimer’s Disease and Other Associated Diseases)
Show Figures

Figure 1

12 pages, 1553 KB  
Article
Functional Disability and Brain MRI Volumetry Results among Multiple Sclerosis Patients during 5-Year Follow-Up
by Sintija Strautmane, Arturs Balodis, Agnete Teivane, Dagnija Grabovska, Edgars Naudins, Daniels Urbanovics, Edgars Fisermans, Janis Mednieks, Alina Flintere-Flinte, Zanda Priede, Andrejs Millers and Maksims Zolovs
Medicina 2023, 59(6), 1082; https://doi.org/10.3390/medicina59061082 - 4 Jun 2023
Cited by 1 | Viewed by 2286
Abstract
Background and Objectives: We aimed to determine the link between brain volumetry results and functional disability calculated using the Expanded Disability Status Scale (EDSS) among multiple sclerosis (MS) patients in relation to the provided treatment (disease-modifying therapies (DMTs)) during a 5-year follow-up [...] Read more.
Background and Objectives: We aimed to determine the link between brain volumetry results and functional disability calculated using the Expanded Disability Status Scale (EDSS) among multiple sclerosis (MS) patients in relation to the provided treatment (disease-modifying therapies (DMTs)) during a 5-year follow-up period. Materials and Methods: A retrospective cohort study was performed enrolling 66 consecutive patients with a confirmed diagnosis of MS, predominantly females (62% (n = 41)). Relapsing–remitting (RR) MS was noted in 92% (n = 61) of patients, with the rest being patients with secondary progressive (SP) MS. The mean age was 43.3 years (SD 8.3 years). All patients were evaluated clinically using the EDSS and “FreeSurfer© 7.2.0” radiologically during a 5-year follow-up. Results: A significant increase in patient functional disability was noted, calculated using the EDSS during a 5-year follow-up. The baseline EDSS ranged between 1 and 6 with a median of 1.5 (IQR 1.5–2.0), and after 5 years, the EDSS was between 1 and 7, with a median EDSS of 3.0 (IQR 2.4–3.6). Compared with RRMS patients, SPMS patients demonstrated a significant increase in EDSS score during a 5-year period, with a median EDSS of 2.5 in RRMS patients (IQR 2.0–3.3) and 7.0 (IQR 5.0–7.0) among SPMS patients. Significantly lower brain volumetry results in different brain areas were found, including cortical, total grey and white matter, p < 0.05. Statistically significant differences were observed between baseline volumetry results of the hippocampus and the middle anterior part of the corpus callosum and their volumetry results after 5 years, p < 0.001. In this study population, the thalamus did not demonstrate significant changes in volumetry results during follow-up, p > 0.05. The provided treatment (DMTs) did not demonstrate a significant impact on the brain MRI volumetry results during a 5-year follow-up, p > 0.05. Conclusions: Brain MRI volumetry seriously impacts the early detection of brain atrophic changes. In this study, significant relationship between brain magnetic resonance volumetry results and disability progression among MS patients with no important impact of the provided treatment was described. Brain MRI volumetry may aid in the identification of early disease progression among MS patients, as well as enrich the clinical evaluation of MS patients in clinical patient care. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

9 pages, 313 KB  
Article
Serum NfL in Alzheimer Dementia: Results of the Prospective Dementia Registry Austria
by Daniela Kern, Michael Khalil, Lukas Pirpamer, Arabella Buchmann, Edith Hofer, Peter Dal-Bianco, Elisabeth Stögmann, Christoph Scherfler, Thomas Benke, Gerhard Ransmayr and Reinhold Schmidt
Medicina 2022, 58(3), 433; https://doi.org/10.3390/medicina58030433 - 16 Mar 2022
Cited by 11 | Viewed by 3824
Abstract
Background and Objectives: The neurofilament light chain (NfL) is a biomarker for neuro-axonal injury in various acute and chronic neurological disorders, including Alzheimer’s disease (AD). We here investigated the cross-sectional and longitudinal associations between baseline serum NfL (sNfL) levels and cognitive, behavioural [...] Read more.
Background and Objectives: The neurofilament light chain (NfL) is a biomarker for neuro-axonal injury in various acute and chronic neurological disorders, including Alzheimer’s disease (AD). We here investigated the cross-sectional and longitudinal associations between baseline serum NfL (sNfL) levels and cognitive, behavioural as well as MR volumetric findings in the Prospective Dementia Registry Austria (PRODEM-Austria). Materials and Methods: All participants were clinically diagnosed with AD according to NINCDS-ADRDA criteria and underwent a detailed clinical assessment, cognitive testing (including the Mini Mental State Examination (MMSE) and the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)), the neuropsychiatric inventory (NPI) and laboratory evaluation. A total of 237 patients were included in the study. Follow-up examinations were done at 6 months, 1 year and 2 years with 93.3% of patients undergoing at least one follow-up. We quantified sNfL by a single molecule array (Simoa). In a subgroup of 125 subjects, brain imaging data (1.5 or 3T MRI, with 1 mm isotropic resolution) were available. Brain volumetry was assessed using the FreeSurfer image analysis suite (v6.0). Results: Higher sNfL concentrations were associated with worse performance in cognitive tests at baseline, including CERAD (B = −10.084, SE = 2.999, p < 0.001) and MMSE (B = −3.014, SE = 1.293, p = 0.021). The sNfL levels also correlated with the presence of neuropsychiatric symptoms (NPI total score: r = 0.138, p = 0.041) and with smaller volumes of the temporal lobe (B = −0.012, SE = 0.003, p = 0.001), the hippocampus (B = −0.001, SE = 0.000201, p = 0.013), the entorhinal (B = −0.000308, SE = 0.000124, p = 0.014), and the parahippocampal cortex (B = −0.000316, SE = 0.000113, p = 0.006). The sNfL values predicted more pronounced cognitive decline over the mean follow-up period of 22 months, but there were no significant associations with respect to change in neuropsychiatric symptoms and brain volumetric measures. Conclusions: the sNfL levels relate to cognitive, behavioural, and imaging hallmarks of AD and predicts short term cognitive decline. Full article
16 pages, 509 KB  
Article
Alcohol Use and Prefrontal Cortex Volume Trajectories in Young Adults with Mood Disorders and Associated Clinical Outcomes
by Dylan E. Kirsch, Valeria Tretyak, Vanessa Le, Ansley Huffman, Kim Fromme, Stephen M. Strakowski and Elizabeth T.C. Lippard
Behav. Sci. 2022, 12(3), 57; https://doi.org/10.3390/bs12030057 - 22 Feb 2022
Cited by 5 | Viewed by 5052
Abstract
(1) Background: Alcohol use in the course of mood disorders is associated with worse clinical outcomes. The mechanisms by which alcohol use alters the course of illness are unclear but may relate to prefrontal cortical (PFC) sensitivity to alcohol. We investigated associations between [...] Read more.
(1) Background: Alcohol use in the course of mood disorders is associated with worse clinical outcomes. The mechanisms by which alcohol use alters the course of illness are unclear but may relate to prefrontal cortical (PFC) sensitivity to alcohol. We investigated associations between alcohol use and PFC structural trajectories in young adults with a mood disorder compared to typically developing peers. (2) Methods: 41 young adults (24 with a mood disorder, agemean = 21 ± 2 years) completed clinical evaluations, assessment of alcohol use, and two structural MRI scans approximately one year apart. Freesurfer was used to segment PFC regions of interest (ROIs) (anterior cingulate, orbitofrontal cortex, and frontal pole). Effects of group, alcohol use, time, and interactions among these variables on PFC ROIs at baseline and follow-up were modeled. Associations were examined between alcohol use and longitudinal changes in PFC ROIs with prospective mood. (3) Results: Greater alcohol use was prospectively associated with decreased frontal pole volume in participants with a mood disorder, but not typically developing comparison participants (time-by-group-by-alcohol interaction; p = 0.007); however, this interaction became a statistical trend in a sensitivity analysis excluding one outlier in terms of alcohol use. Greater alcohol use and a decrease in frontal pole volume related to longer duration of major depression during follow-up (p’s < 0.05). (4) Conclusion: Preliminary findings support more research on alcohol use, PFC trajectories, and depression recurrence in young adults with a mood disorder including individuals with heavier drinking patterns. Full article
Show Figures

Figure 1

20 pages, 1857 KB  
Article
Altered Structural Covariance of Insula, Cerebellum and Prefrontal Cortex Is Associated with Somatic Symptom Levels in Irritable Bowel Syndrome (IBS)
by Cecilia Grinsvall, Lukas Van Oudenhove, Patrick Dupont, Hyo Jin Ryu, Maria Ljungberg, Jennifer S. Labus, Hans Törnblom, Emeran A. Mayer and Magnus Simrén
Brain Sci. 2021, 11(12), 1580; https://doi.org/10.3390/brainsci11121580 - 29 Nov 2021
Cited by 9 | Viewed by 4273
Abstract
Somatization, defined as the presence of multiple somatic symptoms, frequently occurs in irritable bowel syndrome (IBS) and may constitute the clinical manifestation of a neurobiological sensitization process. Brain imaging data was acquired with T1 weighted 3 tesla MRI, and gray matter morphometry were [...] Read more.
Somatization, defined as the presence of multiple somatic symptoms, frequently occurs in irritable bowel syndrome (IBS) and may constitute the clinical manifestation of a neurobiological sensitization process. Brain imaging data was acquired with T1 weighted 3 tesla MRI, and gray matter morphometry were analyzed using FreeSurfer. We investigated differences in networks of structural covariance, based on graph analysis, between regional gray matter volumes in IBS-related brain regions between IBS patients with high and low somatization levels, and compared them to healthy controls (HCs). When comparing IBS low somatization (N = 31), IBS high somatization (N = 35), and HCs (N = 31), we found: (1) higher centrality and neighbourhood connectivity of prefrontal cortex subregions in IBS high somatization compared to healthy controls; (2) higher centrality of left cerebellum in IBS low somatization compared to both IBS high somatization and healthy controls; (3) higher centrality of the anterior insula in healthy controls compared to both IBS groups, and in IBS low compared to IBS high somatization. The altered structural covariance of prefrontal cortex and anterior insula in IBS high somatization implicates that prefrontal processes may be more important than insular in the neurobiological sensitization process associated with IBS high somatization. Full article
Show Figures

Figure 1

14 pages, 1260 KB  
Article
Anatomically Standardized Detection of MRI Atrophy Patterns in Early-Stage Alzheimer’s Disease
by Lukas Lenhart, Stephan Seiler, Lukas Pirpamer, Georg Goebel, Thomas Potrusil, Michaela Wagner, Peter Dal Bianco, Gerhard Ransmayr, Reinhold Schmidt, Thomas Benke and Christoph Scherfler
Brain Sci. 2021, 11(11), 1491; https://doi.org/10.3390/brainsci11111491 - 11 Nov 2021
Cited by 9 | Viewed by 5701
Abstract
MRI studies have consistently identified atrophy patterns in Alzheimer’s disease (AD) through a whole-brain voxel-based analysis, but efforts to investigate morphometric profiles using anatomically standardized and automated whole-brain ROI analyses, performed at the individual subject space, are still lacking. In this study we [...] Read more.
MRI studies have consistently identified atrophy patterns in Alzheimer’s disease (AD) through a whole-brain voxel-based analysis, but efforts to investigate morphometric profiles using anatomically standardized and automated whole-brain ROI analyses, performed at the individual subject space, are still lacking. In this study we aimed (i) to utilize atlas-derived measurements of cortical thickness and subcortical volumes, including of the hippocampal subfields, to identify atrophy patterns in early-stage AD, and (ii) to compare cognitive profiles at baseline and during a one-year follow-up of those previously identified morphometric AD subtypes to predict disease progression. Through a prospectively recruited multi-center study, conducted at four Austrian sites, 120 patients were included with probable AD, a disease onset beyond 60 years and a clinical dementia rating of ≤1. Morphometric measures of T1-weighted images were obtained using FreeSurfer. A principal component and subsequent cluster analysis identified four morphometric subtypes, including (i) hippocampal predominant (30.8%), (ii) hippocampal-temporo-parietal (29.2%), (iii) parieto-temporal (hippocampal sparing, 20.8%) and (iv) hippocampal-temporal (19.2%) atrophy patterns that were associated with phenotypes differing predominately in the presentation and progression of verbal memory and visuospatial impairments. These morphologically distinct subtypes are based on standardized brain regions, which are anatomically defined and freely accessible so as to validate its diagnostic accuracy and enhance the prediction of disease progression. Full article
(This article belongs to the Special Issue Neuropsychology in Neurodegenerative Diseases)
Show Figures

Figure 1

12 pages, 278 KB  
Article
Volumetric MRI Analysis of Brain Structures in Patients with History of First and Repeated Suicide Attempts: A Cross Sectional Study
by Milda Sarkinaite, Rymante Gleizniene, Virginija Adomaitiene, Kristina Dambrauskiene, Nijole Raskauskiene and Vesta Steibliene
Diagnostics 2021, 11(3), 488; https://doi.org/10.3390/diagnostics11030488 - 10 Mar 2021
Cited by 18 | Viewed by 2767
Abstract
Structural brain changes are found in suicide attempters and in patients with mental disorders. It remains unclear whether the suicidal behaviors are related to atrophy of brain regions and how the morphology of specific brain areas is changing with each suicide attempt. The [...] Read more.
Structural brain changes are found in suicide attempters and in patients with mental disorders. It remains unclear whether the suicidal behaviors are related to atrophy of brain regions and how the morphology of specific brain areas is changing with each suicide attempt. The sample consisted of 56 patients hospitalized after first suicide attempt (first SA) (n = 29), more than one suicide attempt (SA > 1) (n = 27) and 54 healthy controls (HC). Brain volume was measured using FreeSurfer 6.0 automatic segmentation technique. In comparison to HC, patients with first SA had significantly lower cortical thickness of the superior and rostral middle frontal areas, the inferior, middle and superior temporal areas of the left hemisphere and superior frontal area of the right hemisphere. In comparison to HC, patients after SA > 1 had a significantly lower cortical thickness in ten areas of frontal cortex of the left hemisphere and seven areas of the right hemisphere. The comparison of hippocampus volume showed a significantly lower mean volume of left and right parts in patients with SA > 1, but not in patients with first SA. The atrophy of frontal, temporal cortex and hippocampus parts was significantly higher in repeated suicide attempters than in patients with first suicide attempt. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Back to TopTop