Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = Fiber Optic Gyroscope (FOG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11821 KiB  
Article
Bias Estimation for Low-Cost IMU Including X- and Y-Axis Accelerometers in INS/GPS/Gyrocompass
by Gen Fukuda and Nobuaki Kubo
Sensors 2025, 25(5), 1315; https://doi.org/10.3390/s25051315 - 21 Feb 2025
Viewed by 1849
Abstract
Inertial navigation systems (INSs) provide autonomous position estimation capabilities independent of global navigation satellite systems (GNSSs). However, the high cost of traditional sensors, such as fiber-optic gyroscopes (FOGs), limits their widespread adoption. In contrast, micro-electromechanical system (MEMS)-based inertial measurement units (IMUs) offer a [...] Read more.
Inertial navigation systems (INSs) provide autonomous position estimation capabilities independent of global navigation satellite systems (GNSSs). However, the high cost of traditional sensors, such as fiber-optic gyroscopes (FOGs), limits their widespread adoption. In contrast, micro-electromechanical system (MEMS)-based inertial measurement units (IMUs) offer a low-cost alternative; however, their lower accuracy and sensor bias issues, particularly in maritime environments, remain considerable obstacles. This study proposes an improved method for bias estimation by comparing the estimated values from a trajectory generator (TG)-based acceleration and angular-velocity estimation system with actual measurements. Additionally, for X- and Y-axis accelerations, we introduce a method that leverages the correlation between altitude differences derived from an INS/GNSS/gyrocompass (IGG) and those obtained during the TG estimation process to estimate the bias. Simulation datasets from experimental voyages validate the proposed method by evaluating the mean, median, normalized cross-correlation, least squares, and fast Fourier transform (FFT). The Butterworth filter achieved the smallest angular-velocity bias estimation error. For X- and Y-axis acceleration bias, altitude-based estimation achieved differences of 1.2 × 10−2 m/s2 and 1.0 × 10−4 m/s2, respectively, by comparing the input bias using 30 min data. These methods enhance the positioning and attitude estimation accuracy of low-cost IMUs, providing a cost-effective maritime navigation solution. Full article
(This article belongs to the Special Issue INS/GNSS Integrated Navigation Systems)
Show Figures

Figure 1

26 pages, 7655 KiB  
Article
NIGWO-iCaps NN: A Method for the Fault Diagnosis of Fiber Optic Gyroscopes Based on Capsule Neural Networks
by Nan Lu, Huaqiang Zhang, Chunmei Dong, Hongtao Li and Yu Chen
Micromachines 2025, 16(1), 73; https://doi.org/10.3390/mi16010073 - 10 Jan 2025
Cited by 1 | Viewed by 818
Abstract
When using a fiber optic gyroscope as the core measurement element in an inertial navigation system, its work stability and reliability directly affect the accuracy of the navigation system. The modeling and fault diagnosis of the gyroscope is of great significance in ensuring [...] Read more.
When using a fiber optic gyroscope as the core measurement element in an inertial navigation system, its work stability and reliability directly affect the accuracy of the navigation system. The modeling and fault diagnosis of the gyroscope is of great significance in ensuring the high accuracy and long endurance of the inertial system. Traditional diagnostic models often encounter challenges in terms of reliability and accuracy, for example, difficulties in feature extraction, high computational cost, and long training time. To address these challenges, this paper proposes a new fault diagnostic model that performs a fault diagnosis of gyroscopes using the enhanced capsule neural network (iCaps NN) optimized by the improved gray wolf algorithm (NIGWO). The wavelet packet transform (WPT) is used to construct a two-dimensional feature vector matrix, and the deep feature extraction module (DFE) is added to extract deep-level information to maximize the fault features. Then, an improved gray wolf algorithm combined with the adaptive algorithm (Adam) is proposed to determine the optimal values of the model parameters, which improves the optimization performance. The dynamic routing mechanism is utilized to greatly reduce the model training time. In this paper, effectiveness experiments were carried out on the simulation dataset and real dataset, respectively; the diagnostic accuracy of the fault diagnosis method in this paper reached 99.41% on the simulation dataset; the loss value in the real dataset converged to 0.005 with the increase in the number of iterations; and the average diagnostic accuracy converged to 95.42%. The results show that the diagnostic accuracy of the NIGWO-iCaps NN model proposed in this paper is improved by 13.51% compared with the traditional diagnostic methods. It effectively confirms that the method in this paper is capable of efficient and accurate fault diagnosis of FOG and has strong generalization ability. Full article
Show Figures

Figure 1

18 pages, 4085 KiB  
Article
Error Modeling of Fiber Optic Gyroscope Universal Time Measurement
by Zishuai Wang, Yingmin Yi, Chunyi Su, Jinsheng Zhang, Yiwei Yuan and Yuchen Zhao
Appl. Sci. 2025, 15(1), 24; https://doi.org/10.3390/app15010024 - 24 Dec 2024
Viewed by 1270
Abstract
Since the fiber optic gyroscope (FOG) is rigidly strapped down to the earth’s crust, there are various errors that affect the universal time (UT1) measurements. In this paper, the errors caused by various physical factors and mechanisms are analyzed in detail, with precession [...] Read more.
Since the fiber optic gyroscope (FOG) is rigidly strapped down to the earth’s crust, there are various errors that affect the universal time (UT1) measurements. In this paper, the errors caused by various physical factors and mechanisms are analyzed in detail, with precession and nutation errors being taken into account, and modeling of the observation equations based on precession and nutation error correction is proposed. The mapping relationship with UT1 is established based on this observation equation; after the corresponding error correction and VLBI calibration, the high-accuracy solution of UT1 is finally completed. Through 14-day measurement experiments under a room temperature environment without any vibration isolation and magnetic shielding devices, the error variation of UT1 solution compared with the earth orientation parameter (EOP) 14 C04 data is calculated at less than 3.57 ms, with UT1 solution accuracy improved by 56% compared with the traditional method. These results indicate that this work facilitates the study of giant FOG error modeling and correction, advancing our understanding of errors in giant FOG measurements and improving the accuracy of UT1 solution. Full article
Show Figures

Figure 1

19 pages, 6503 KiB  
Article
Analysis of the Temperature Field Characteristics and Thermal-Induced Errors of Miniature Interferometric Fiber Optic Gyroscopes in a Vacuum Environment
by Zicheng Wang, Xiuwei Xia, Wei Gao and Xiangjun Zhang
Photonics 2024, 11(9), 869; https://doi.org/10.3390/photonics11090869 - 16 Sep 2024
Cited by 2 | Viewed by 4077
Abstract
This paper investigates the mechanism of thermal-induced errors in interferometric fiber optic gyroscopes (IFOGs) caused by temperature changes in a vacuum environment, proposing a method for calculating thermal-induced errors in small fiber coils. Firstly, based on the Shupe effect and the thermal stress [...] Read more.
This paper investigates the mechanism of thermal-induced errors in interferometric fiber optic gyroscopes (IFOGs) caused by temperature changes in a vacuum environment, proposing a method for calculating thermal-induced errors in small fiber coils. Firstly, based on the Shupe effect and the thermal stress caused by temperature changes around the fiber coil, a three-dimensional thermal-induced error model for small fiber coils is established. Secondly, a spatial fiber optic inertial measurement unit (IMU) model is designed using the Creo 3D modeling software (creo 7.0.0). The model is then imported into the Ansys finite element simulation software (ANSYS Workbench 15.0), where a temperature field is applied to the IMU based on actual temperature profiles to obtain the temperature distribution of the fiber coil at different times in a vacuum state. These data are then used in the three-dimensional thermal-induced error model to calculate the thermal-induced error of the FOG. Finally, a thermal vacuum experimental platform is set up to collect temperature variation data from the inertial measurement components. The experimental data are compared with the three-dimensional error model proposed in this paper as well as traditional error models. The root mean square error is approximately 33% lower than that of traditional error calculation methods, which also proves the theoretical accuracy. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

18 pages, 10601 KiB  
Article
The Zero-Velocity Correction Method for Pipe Jacking Automatic Guidance System Based on Fiber Optic Gyroscope
by Wenbo Zhang, Lu Wang and Yutong Zu
Sensors 2024, 24(18), 5911; https://doi.org/10.3390/s24185911 - 12 Sep 2024
Cited by 2 | Viewed by 1343
Abstract
The pipe jacking guidance system based on a fiber optic gyroscope (FOG) has gained extensive attention due to its high degree of safety and autonomy. However, all inertial guidance systems have accumulative errors over time. The zero-velocity update (ZUPT) algorithm is an effective [...] Read more.
The pipe jacking guidance system based on a fiber optic gyroscope (FOG) has gained extensive attention due to its high degree of safety and autonomy. However, all inertial guidance systems have accumulative errors over time. The zero-velocity update (ZUPT) algorithm is an effective error compensation method, but accurately distinguishing between moving and stationary states in slow pipe jacking operations is a major challenge. To address this challenge, a “MV + ARE + SHOE” three-conditional zero-velocity detection (TCZVD) algorithm for the fiber optic gyroscope inertial navigation system (FOG-INS) is designed. Firstly, a Kalman filter model based on ZUPT is established. Secondly, the TCZVD algorithm, which combines the moving variance of acceleration (MV), angular rate energy (ARE), and stance hypothesis optimal estimation (SHOE), is proposed. Finally, experiments are conducted, and the results indicate that the proposed algorithm achieves a zero-velocity detection accuracy of 99.18% and can reduce positioning error to less than 2% of the total distance. Furthermore, the applicability of the proposed algorithm in the practical working environment is confirmed through on-site experiments. The results demonstrate that this method can effectively suppress the accumulated error of the inertial guidance system and improve the positioning accuracy of pipe jacking. It provides a robust and reliable solution for practical engineering challenges. Therefore, this study will contribute to the development of pipe jacking automatic guidance technology. Full article
(This article belongs to the Special Issue Advances in Optical Sensing, Instrumentation and Systems: 2nd Edition)
Show Figures

Figure 1

17 pages, 8373 KiB  
Article
CEEMDAN-LWT De-Noising Method for Pipe-Jacking Inertial Guidance System Based on Fiber Optic Gyroscope
by Yutong Zu, Lu Wang, Yuanbiao Hu and Gansheng Yang
Sensors 2024, 24(4), 1097; https://doi.org/10.3390/s24041097 - 7 Feb 2024
Cited by 4 | Viewed by 1506
Abstract
An inertial guidance system based on a fiber optic gyroscope (FOG) is an effective way to guide long-distance curved pipe jacking. However, environmental disturbances such as vibration, electromagnetism, and temperature will cause the FOG signal to generate significant random noise. The random noise [...] Read more.
An inertial guidance system based on a fiber optic gyroscope (FOG) is an effective way to guide long-distance curved pipe jacking. However, environmental disturbances such as vibration, electromagnetism, and temperature will cause the FOG signal to generate significant random noise. The random noise will overwhelm the effective signal. Therefore, it is necessary to eliminate the random noise. This study proposes a hybrid de-noising method, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)—lifting wavelet transform (LWT). Firstly, the FOG signal is extracted using a sliding window and decomposed by CEEMDAN to obtain the intrinsic modal function (IMF) with N different scales and one residual. Subsequently, the effective IMF components are selected according to the correlation coefficient between the IMF components and the FOG signal. Due to the low resolution of the CEEMDAN method for high-frequency components, the selected high-frequency IMF components are decomposed with lifting wavelet transform to increase the resolution of the signal. The detailed signals of the LWT decomposition are de-noised using the soft threshold de-noising method, and then the signal is reconstructed. Finally, pipe-jacking dynamic and environmental interference experiments were conducted to verify the effectiveness of the CEEMDAN-LWT de-noising method. The de-noising effect of the proposed method was evaluated by SNR, RMSE, and Deviation and compared with the CEEMDAN and LWT de-noising methods. The results show that the CEEMDAN-LWT de-noising method has the best de-noising effect with good adaptivity and high accuracy. The navigation results of the pipe-jacking attitude before and after de-noising were compared and analyzed in the environmental interference experiment. The results show that the absolute error of the pipe-jacking pitch, roll, and heading angles is reduced by 39.86%, 59.45%, and 14.29% after de-noising. The maximum relative error of the pitch angle is improved from −0.74% to −0.44%, the roll angle is improved from 2.07% to 0.79%, and the heading angle is improved from −0.07% to −0.06%. Therefore, the CEEMDAN-LWT method can effectively suppress the random errors of the FOG signal caused by the environment and improve the measurement accuracy of the pipe-jacking attitude. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2022–2023)
Show Figures

Figure 1

14 pages, 3076 KiB  
Article
A Segmented Cross-Correlation Algorithm for Dynamic North Finding Using Fiber Optic Gyroscopes
by Shuwei Fang, Shanjun Mao, Yanjun Chen and Lanxin Zhu
Sensors 2024, 24(2), 322; https://doi.org/10.3390/s24020322 - 5 Jan 2024
Cited by 1 | Viewed by 1622
Abstract
Fiber optic gyroscope (FOG)-based north finding is extensively applied in navigation, positioning, and various fields. In dynamic north finding, an accelerated turntable speed shortens the time required for north finding, resulting in a rapid north-finding response. However, with an increase in turntable speed, [...] Read more.
Fiber optic gyroscope (FOG)-based north finding is extensively applied in navigation, positioning, and various fields. In dynamic north finding, an accelerated turntable speed shortens the time required for north finding, resulting in a rapid north-finding response. However, with an increase in turntable speed, the turntable’s jitter contributes to signal contamination in the FOG, leading to a deterioration in north-finding accuracy. This paper introduces a divide-and-conquer algorithm, the segmented cross-correlation algorithm, designed to mitigate the impact of turntable speed jitter. A model for north-finding error is established and analyzed, incorporating FOG’s self-noise and the turntable’s speed jitter. To validate the feasibility of our method, we implemented the algorithm on a FOG. The simulation and experimental results exhibited a strong concordance, affirming the validity of our proposed north-finding error model. The experimental findings indicate that, at a turntable speed of 180°/s, the north-finding bias error within a 360 s duration is 0.052°, representing a 64% improvement over the traditional algorithm. These results indicate the effectiveness of the proposed algorithm in mitigating the impact of unstable turntable speeds, offering a solution for north finding with both prompt response and enhanced accuracy. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

18 pages, 7506 KiB  
Article
Temperature Drift Compensation of Fiber Optic Gyroscopes Based on an Improved Method
by Xinwang Wang, Ying Cui and Huiliang Cao
Micromachines 2023, 14(9), 1712; https://doi.org/10.3390/mi14091712 - 31 Aug 2023
Cited by 6 | Viewed by 2553
Abstract
This study proposes an improved multi-scale permutation entropy complete ensemble empirical mode decomposition with adaptive noise (MPE-CEEMDAN) method based on adaptive Kalman filter (AKF) and grey wolf optimizer-least squares support vector machine (GWO-LSSVM). By establishing a temperature compensation model, the gyro temperature output [...] Read more.
This study proposes an improved multi-scale permutation entropy complete ensemble empirical mode decomposition with adaptive noise (MPE-CEEMDAN) method based on adaptive Kalman filter (AKF) and grey wolf optimizer-least squares support vector machine (GWO-LSSVM). By establishing a temperature compensation model, the gyro temperature output signal is optimized and reconstructed, and a gyro output signal is obtained with better accuracy. Firstly, MPE-CEEMDAN is used to decompose the FOG output signal into several intrinsic mode functions (IMFs); then, the IMFs signal is divided into mixed noise, temperature drift, and other noise according to different frequencies. Secondly, the AKF method is used to denoise the mixed noise. Thirdly, in order to denoise the temperature drift, the fiber gyroscope temperature compensation model is established based on GWO-LSSVM, and the signal without temperature drift is obtained. Finally, the processed mixed noise, the processed temperature drift, the processed other noise, and the signal-dominated IMFs are reconstructed to acquire the improved output signal. The experimental results show that, by using the improved method, the output of a fiber optic gyroscope (FOG) ranging from −30 °C to 60 °C decreases, and the temperature drift dramatically declines. The factor of quantization noise (Q) reduces from 6.1269 × 10−3 to 1.0132 × 10−4, the factor of bias instability (B) reduces from 1.53 × 10−2 to 1 × 10−3, and the factor of random walk of angular velocity (N) reduces from 7.8034 × 10−4 to 7.2110 × 10−6. The improved algorithm can be adopted to denoise the output signal of the FOG with higher accuracy. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

17 pages, 2592 KiB  
Review
Application and Development of Fiber Optic Gyroscope Inertial Navigation System in Underground Space
by Hang Xu, Lu Wang, Yutong Zu, Wenchao Gou and Yuanbiao Hu
Sensors 2023, 23(12), 5627; https://doi.org/10.3390/s23125627 - 15 Jun 2023
Cited by 15 | Viewed by 6215
Abstract
Fiber Optic Gyroscope Inertial Navigation System (FOG-INS) is a navigation system using fiber optic gyroscopes and accelerometers, which can offer high-precision position, velocity, and attitude information for carriers. FOG-INS is widely used in aerospace, marine ships, and vehicle navigation. In recent years, it [...] Read more.
Fiber Optic Gyroscope Inertial Navigation System (FOG-INS) is a navigation system using fiber optic gyroscopes and accelerometers, which can offer high-precision position, velocity, and attitude information for carriers. FOG-INS is widely used in aerospace, marine ships, and vehicle navigation. In recent years, it has also played an important role in underground space. For example, in the deep earth, FOG-INS can be used in directional well drilling, which can enhance recovery in resource exploitation. While, in shallow earth, FOG-INS is a high-precision positioning technique that can guide construction in trenchless underground pipelaying. This article extensively reviews the application status and latest progress of FOG-INS in underground space from three aspects—FOG inclinometer, FOG drilling tool attitude measurement while drilling (MWD) unit, and FOG pipe-jacking guidance system. First, measurement principles and product technologies are introduced. Second, the research hot spots are summarized. Finally, the key technical issues and future trends for development are put forward. The findings of this work are useful for further research in the field of FOG-INS in underground space, which not only provides new ideas and directions for scientific research, but also offers guidance for subsequent engineering applications. Full article
(This article belongs to the Special Issue Advanced Fiber Optic Gyroscopes)
Show Figures

Figure 1

11 pages, 2543 KiB  
Communication
Methods for Comprehensive Calibration of a Low-Frequency Angular Acceleration Rotary Table
by Renjian Feng, Jiaxuan Yan, Yinfeng Wu, Ning Yu and Xudong Yin
Sensors 2023, 23(10), 4876; https://doi.org/10.3390/s23104876 - 18 May 2023
Cited by 2 | Viewed by 1781
Abstract
The total harmonic distortion (THD) index and its calculation methods are presented to calibrate the sinusoidal motion of the low-frequency angular acceleration rotary table (LFAART) and make up the incomprehensive evaluation based on the angular acceleration amplitude and frequency error indexes. The THD [...] Read more.
The total harmonic distortion (THD) index and its calculation methods are presented to calibrate the sinusoidal motion of the low-frequency angular acceleration rotary table (LFAART) and make up the incomprehensive evaluation based on the angular acceleration amplitude and frequency error indexes. The THD is calculated from two measurement schemes: a unique scheme combining the optical shaft encoder and the laser triangulation sensor and a regular scheme using the fiber optical gyroscope (FOG). An improved reversing moments recognition method is presented to upgrade the accuracy of solving the angular motion amplitude based on optical shaft encoder output. The field experiment shows that the difference in the THD values achieved using the combining scheme and FOG is within 0.11% when the signal-to-noise ratio of the FOG signal is higher than 7.7 dB, indicating the accuracy of the proposed methods and the feasibility of taking THD as the index. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2022–2023)
Show Figures

Figure 1

11 pages, 5042 KiB  
Article
Inductively Coupled Plasma Dry Etching of Silicon Deep Trenches with Extremely Vertical Smooth Sidewalls Used in Micro-Optical Gyroscopes
by Yuyu Zhang, Yu Wu, Quanquan Sun, Lifeng Shen, Jie Lan, Lingxi Guo, Zhenfeng Shen, Xuefang Wang, Junfeng Xiao and Jianfeng Xu
Micromachines 2023, 14(4), 846; https://doi.org/10.3390/mi14040846 - 14 Apr 2023
Cited by 5 | Viewed by 5099
Abstract
Micro-optical gyroscopes (MOGs) place a range of components of the fiber-optic gyroscope (FOG) onto a silicon substrate, enabling miniaturization, low cost, and batch processing. MOGs require high-precision waveguide trenches fabricated on silicon instead of the ultra-long interference ring of conventional F OGs. In [...] Read more.
Micro-optical gyroscopes (MOGs) place a range of components of the fiber-optic gyroscope (FOG) onto a silicon substrate, enabling miniaturization, low cost, and batch processing. MOGs require high-precision waveguide trenches fabricated on silicon instead of the ultra-long interference ring of conventional F OGs. In our study, the Bosch process, pseudo-Bosch process, and cryogenic etching process were investigated to fabricate silicon deep trenches with vertical and smooth sidewalls. Different process parameters and mask layer materials were explored for their effect on etching. The effect of charges in the Al mask layer was found to cause undercut below the mask, which can be suppressed by selecting proper mask materials such as SiO2. Finally, ultra-long spiral trenches with a depth of 18.1 μm, a verticality of 89.23°, and an average roughness of trench sidewalls less than 3 nm were obtained using a cryogenic process at −100 °C. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 2nd Edition)
Show Figures

Figure 1

12 pages, 3123 KiB  
Article
Digital Control and Demodulation Algorithm for Compact Open-Loop Fiber-Optic Gyroscope
by Lin Chen, Zhao Huang, Yuzheng Mao, Biqiang Jiang and Jianlin Zhao
Sensors 2023, 23(3), 1473; https://doi.org/10.3390/s23031473 - 28 Jan 2023
Cited by 1 | Viewed by 3532
Abstract
With the advantages of small size, low cost, and moderate accuracy, an open-loop fiber-optic gyroscope (FOG) has a wide range of applications around control and automation. For the most cost-sensitive applications, a simple and stable digital algorithm with a reduced control-circuit volume and [...] Read more.
With the advantages of small size, low cost, and moderate accuracy, an open-loop fiber-optic gyroscope (FOG) has a wide range of applications around control and automation. For the most cost-sensitive applications, a simple and stable digital algorithm with a reduced control-circuit volume and cost is highly desirable to realize high-precision control of a FOG. In this work, a new algorithm for an open-loop FOG is proposed based on the discrete multi-point demodulation in the sinusoidal modulation period. Utilizing this algorithm, stable control and angular velocity calculation of a gyro are realized with effectively suppressed gyro error. The use of this algorithm greatly reduces the requirements for processing power and simplifies the gyro circuit. Based on this algorithm, a digital FOG with a volume of only 25 × 20 × 40 mm3 achieves a bias instability of less than 0.15°/h, an angle random walk (ARW) of less than 0.015°/√h, a start-up time of less than 1 s, and a 3 dB bandwidth beyond 160 Hz. This low-cost, compact, and high-performance gyro is sufficient to satisfy the requirements of applications in the navigation and control fields such as unmanned driving. Full article
(This article belongs to the Special Issue Advanced Research of Optical Fiber Sensing Technology)
Show Figures

Figure 1

14 pages, 6628 KiB  
Article
Thermal Sensitivity of Birefringence in Polarization-Maintaining Hollow-Core Photonic Bandgap Fibers
by Lidong Wang, Meisong Liao, Fei Yu, Weichang Li, Jiacheng Xu, Lili Hu and Weiqing Gao
Photonics 2023, 10(2), 103; https://doi.org/10.3390/photonics10020103 - 18 Jan 2023
Cited by 5 | Viewed by 2508
Abstract
Polarization-maintaining (PM) fiber is the core sensitive component of a fiber optic gyroscope (FOG); its birefringence temperature stability is crucial for maintaining accuracy. Here, we systematically investigated the structural thermal deformation and the resulting birefringence variation in typical PM hollow-core photonic bandgap fibers [...] Read more.
Polarization-maintaining (PM) fiber is the core sensitive component of a fiber optic gyroscope (FOG); its birefringence temperature stability is crucial for maintaining accuracy. Here, we systematically investigated the structural thermal deformation and the resulting birefringence variation in typical PM hollow-core photonic bandgap fibers (HC-PBGFs) for FOG according to varying fiber structure parameters. To verify the application potential of PM HC-PBGFs in FOG, we compared the thermal sensitivity of birefringence (TSB) with that of the commonly used Panda PM fiber, which was tested to 5.07 × 10−5/100 °C. For rhombic-core fibers, the TSB was determined by the structure of the cladding and could be tuned as low as low as 10−7/100 °C, two orders of magnitude smaller than that of the panda PM fibers. For hexagonal-core fibers, the birefringence variation depended mainly on the drift of the surface modes (SMs) caused by the deformation of the core. A slight drift in SMs could cause a dramatic birefringence variation in hexagonal-core fiber, and the TSB could be as high as 10−4/100 °C, much higher than that of panda PM fiber. This study lays the foundation for the development of high birefringence temperature-stable HC-PBGFs and their applications in FOG. Full article
(This article belongs to the Special Issue Optical Fiber Physical and Mechanical Sensors)
Show Figures

Figure 1

17 pages, 4455 KiB  
Article
Fiber-Optic Gyroscope Thermal Calibration through Two-Dimensional N-Order Polynomial for Landslide Displacement Monitoring
by Guiying Lu, Huiming Tang, Yu Zhu, Yongquan Zhang and Haifeng Xu
Energies 2022, 15(21), 7845; https://doi.org/10.3390/en15217845 - 23 Oct 2022
Cited by 1 | Viewed by 1991
Abstract
A fiber-optic gyroscope (FOG) with lower precision but higher cost advantage is typically selected according to working conditions and engineering budget. Thermal drift is the main factor affecting FOG precision. External thermal calibration methods by algorithms can effectively weaken the influence of thermal [...] Read more.
A fiber-optic gyroscope (FOG) with lower precision but higher cost advantage is typically selected according to working conditions and engineering budget. Thermal drift is the main factor affecting FOG precision. External thermal calibration methods by algorithms can effectively weaken the influence of thermal drift. This paper presents a thermal calibration method of a two-dimensional N-order polynomial (TDNP) and compares it with artificial neural network (ANN) methods to determine a software FOG thermal calibration method for landslide displacement monitoring. The TDNP thermal calibration coefficient matrix was established, and the thermal calibration capability of the TDNP method with different orders N was evaluated on the basis of error analysis. The ANN model with 1 to 18 hidden neural layers was established on the basis of LM, BR, and SCG algorithms to choose a suitable ANN. Finally, the mean absolute errors of FOG thermal calibration through the TDNP with different orders and the LM were compared. This method was applied in the Huangtupo landslide area, China. The results highlight that the TDNP method with order 5 had better performance and satisfied the requirements of landslide displacement monitoring. The research results can compensate for the lack of adaptability of the FOG thermal calibration method in landslide displacement monitoring. Full article
Show Figures

Figure 1

23 pages, 10452 KiB  
Article
A Fast North-Finding Algorithm on the Moving Pedestal Based on the Technology of Extended State Observer (ESO)
by Yunchao Bai, Bing Li, Haosu Zhang, Sheng Wang, Debao Yan, Ziheng Gao and Wenchao Pan
Sensors 2022, 22(19), 7547; https://doi.org/10.3390/s22197547 - 5 Oct 2022
Cited by 1 | Viewed by 2035
Abstract
We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced [...] Read more.
We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1′ (1.8′) after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8′ (14.2′) after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments. Full article
(This article belongs to the Special Issue Mobile Robots for Navigation)
Show Figures

Figure 1

Back to TopTop