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Abstract: An inertial guidance system based on a fiber optic gyroscope (FOG) is an effective way to
guide long-distance curved pipe jacking. However, environmental disturbances such as vibration,
electromagnetism, and temperature will cause the FOG signal to generate significant random noise.
The random noise will overwhelm the effective signal. Therefore, it is necessary to eliminate the
random noise. This study proposes a hybrid de-noising method, namely complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN)—Ilifting wavelet transform (LWT). Firstly,
the FOG signal is extracted using a sliding window and decomposed by CEEMDAN to obtain the
intrinsic modal function (IMF) with N different scales and one residual. Subsequently, the effective
IMF components are selected according to the correlation coefficient between the IMF components
and the FOG signal. Due to the low resolution of the CEEMDAN method for high-frequency
components, the selected high-frequency IMF components are decomposed with lifting wavelet
transform to increase the resolution of the signal. The detailed signals of the LWT decomposition are
de-noised using the soft threshold de-noising method, and then the signal is reconstructed. Finally,
pipe-jacking dynamic and environmental interference experiments were conducted to verify the
effectiveness of the CEEMDAN-LWT de-noising method. The de-noising effect of the proposed
method was evaluated by SNR, RMSE, and Deviation and compared with the CEEMDAN and LWT
de-noising methods. The results show that the CEEMDAN-LWT de-noising method has the best
de-noising effect with good adaptivity and high accuracy. The navigation results of the pipe-jacking
attitude before and after de-noising were compared and analyzed in the environmental interference
experiment. The results show that the absolute error of the pipe-jacking pitch, roll, and heading
angles is reduced by 39.86%, 59.45%, and 14.29% after de-noising. The maximum relative error of the
pitch angle is improved from —0.74% to —0.44%, the roll angle is improved from 2.07% to 0.79%, and
the heading angle is improved from —0.07% to —0.06%. Therefore, the CEEMDAN-LWT method can
effectively suppress the random errors of the FOG signal caused by the environment and improve
the measurement accuracy of the pipe-jacking attitude.

Keywords: pipe-jacking; FOG; CEEMDAN; LWT; noise reduction

1. Introduction

Long-distance curved pipe-jacking has significant engineering and economic benefits
in tunneling projects crossing densely built-up urban areas, heavily trafficked road sections,
and oversized cross-sections [1,2]. However, the traditional pipe-jacking guidance method
relies on the visibility conditions of the environment and does not apply to long-distance
curved pipe-jacking. The fiber optic gyroscope (FOG) is an all-solid-state angular velocity-
sensitive device, and it can be sensitive to the angular velocity of the Earth’s rotation,
which has the advantage of autonomous navigation [3]. Therefore, the pipe-jacking inertial

Sensors 2024, 24, 1097. https://doi.org/10.3390/s24041097

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s24041097
https://doi.org/10.3390/s24041097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6702-5665
https://orcid.org/0000-0002-1571-5274
https://doi.org/10.3390/s24041097
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041097?type=check_update&version=1

Sensors 2024, 24, 1097

20f17

guidance system uses FOG as a primary sensor to provide real-time attitude measurements
for long-distance curved pipe-jacking [4]. But in practical applications, large motor and
transformer operations will produce vibrations, electromagnetic disturbances, and other
environmental interference due to the rotation of the pipe-jacking cutter. The environment
will affect components such as the fiber optic ring in the FOG, and the FOG signal will
contain a large amount of random noise, resulting in insufficient long-term accuracy [5].
Therefore, it is necessary to reduce noise to obtain more accurate FOG signals and improve
the accuracy of the pipe-jacking attitude [6].

Commonly used FOG random noise filtering methods include digital low-pass filters
and time series forecasting methods [7,8]. The time series forecasting method is based on
Kalman filtering by establishing an autoregressive (AR) or autoregressive moving average
(ARMA) model for the FOG drifting signal, and optimal estimation is performed by a
strong tracking Kalman filtering method [9,10]. The Kalman filter cannot strictly distinguish
between the useful signal and interference noise in the high frequency part. Therefore, if
the low-pass filter is too narrow, it will cause a loss of useful signal, and if the low-pass filter
is too wide, it will lead to a poor filtering effect. However, the Kalman filtering method
based on AR and ARMA models is proposed for smooth signals. Non-smooth FOG signals
need to be smoothed before using these filtering methods.

The empirical mode decomposition (EMD) proposed by Huang E. et al. has achieved
effective results in non-smooth and non-linear signal processing [11]. The EMD can adap-
tively decompose a signal into a series of intrinsic mode functions (IMFs) according to
its own characteristics. The IMF is a description of the signal in different scales. Com-
pared with wavelet transform, EMD has desirable adaptivity and decomposition effects
in signal processing for non-linear and non-smooth signals. However, the EMD method
has an issue that the IMFs may interact or alias with each other during the decomposi-
tion process, i.e., the signals of different scales and frequencies appear in the same IMF
component, or signals of the same scale and frequency are decomposed into multiple
IMF components [12]. Wu et al. [13] proposed an ensemble empirical mode decomposition
(EEMD) method to solve the modal aliasing problem. The EEMD method is to decompose
the original signal by adding white noise several times, and then averaging the results of
the multiple decompositions to obtain the final IMF. Since the EEMD method adds white
noise to the original signal several times, it will cause reconstruction errors. Yeh et al. [14]
proposed a complementary ensemble empirical mode decomposition (CEEMD) method
based on EEMD. The CEEMD works by adding two opposite white noise signals to the
original signal for EMD decomposition. The residual white noise in the reconstructed
signal is effectively eliminated under the premise of guaranteeing the decomposition effect
is comparable to EEMD. However, not only do both EEMD and CEEMD have a problem
with computation and storage complexity, but also the decomposition is too dependent
on the amplitude of the added white noise and the number of accumulated averages.
Thus, Torres et al. [15] proposed complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN), which obtains the IMF by calculating the residual signal by
adding adaptive white noise at each stage of the EMD decomposition. The CEEMDAN
method has complete decomposition, and the reconstruction error is very small each time,
which solves the problem of the low computational efficiency of EEMD and CEEMD, and
has a strong adaptability to non-smooth and non-linear signals [16]. Therefore, for the
non-linear and non-smooth signals of the FOG in the pipe-jacking inertial guidance system,
the CEEMDAN method is suitable for the noise reduction. However, the traditional CEEM-
DAN method directly removes the high-frequency IMF components for noise reduction,
which can easily cause the loss of useful high-frequency signals, and random noise and
spurious IMF components may also be contained in the mid-frequency and low-frequency
IMF components.

Zhao et al. [17] propose a dynamic error compensation method for FOG based on
CEEMDAN that properly separates the effective signal and dynamic error. There is no fur-
ther algorithm that is added to filter out the noise signal. Wang et al. [18] propose a method
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for constructing an FOG temperature drift compensation model based on CEEMDAN, and
use an adaptive Kalman filter (AKF) to filter mixed noise, which effectively reduces tem-
perature errors. However, the CEEMDAN has low resolution for high-frequency signals,
and the Kalman filter has no ability to improve the resolution of high-frequency signals.
Therefore, a CEEMDAN-LWT denoising method combining CEEMDAN and lifting wavelet
transform (LWT) is proposed in this study to preprocess the noisy signals of the FOG. The
useful IMF components are screened by calculating the correlation coefficient between the
IMF components and the original signal. Considering the low resolution of the CEEMDAN
method for high-frequency components, the high-frequency IMF components are screened
for the lifting wavelet transform to increase the resolution [19]. Then, wavelet soft threshold
denoising is performed, and finally, the screened IMF components are reconstructed.

The proposed de-noising method has the complete features of CEEMDAN decompo-
sition. At the same time, the method has the fast de-noising speed and high-resolution
features of LWT decomposition. Furthermore, the method achieves the real-time processing
of the FOG signal by using a sliding pane. By comparing the results of the denoising effects
and Allan variance, the proposed method effectively reduces a majority of the random
noise in the FOG signal within the pipe-jacking inertial guidance system. In addition, the
proposed method also improves the accuracy of the pipe-jacking attitude results.

2. Denoising Principle of CEEMDAN-LWT
2.1. CEEMDAN

The CEEMDAN decomposition is achieved in the following steps.
Adding a specific white noise N(t) to the original signal s(¢) as the signal to be
decomposed, the i-th signal can be expressed as follows.

si(t) = s(t) + Ni(t) ©)

Ni(t) = ok(t)Ei(e(t)) 2

In Equations (1) and (2), i represents the number of times Gaussian white noise is
added, i = 1,2...,n; 0y (t) is a parameter for adaptive adjustment, k = 1,2...,m; e(t) is
the Gaussian white noise; E;(g(t)) is the i th EMD integration average white noise.

First, the first-order IMF component is obtained by EMD decomposition on s;(t),
ie., IMF.

IMFy = 5(t) ~ +3" M(si(1) ®
i=1

where M(-) represents the local average of the envelope satisfying the IMF filtering thresh-
old. The obtained decomposition residue is r1 (t) = s(t) — IMF;.

Next, the decomposition of the residual r1(t) is continued by adding white noise
N(t) and the second-order IMF component is obtained.

IMBy = 11(1) = Y M(n(6) + Ni($) @
i=1

The above steps are repeated until the residuals cannot be discretized, and the k-th
order IMF components are as follows.

™=
=

IMFe = ri(t) — — ) M(re(t) + Ni(t)) =re—1(t) —

1 1

LY M (8) + 01 (DE (1) )

1
n;
1

Il
_

The n is the number of white noises added, which determines the accuracy of the
IMF and is usually set between 100 and 1000. Another important factor affecting the
decomposition results is 01 (t). The value of 03 _1(t) is usually set between 0.1 and 0.3.
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2.2. Correlation Analysis of IMF Components

Two signals, x(7) and y(i), are set and the correlation coefficient R is an indicator of the
degree of correlation between the two signals.

r_ _ Zlx() — E@)]ly(i) — Ew)
VE [x(i) — E)Ply(i) — E(y)?

When R is close to 1, the two signals have a strong positive correlation; when R is close
to —1, the two signals have a strong negative correlation; and when R is closer to 0, the
two signals have a nearly weak correlation. After CEEMDAN decomposition, the effective
IMF components are screened, and pseudo IMF components are removed by calculating
the correlation coefficient between two signals. This process aims to enhance the accuracy
of the signal [20,21].

(6)

2.3. LWT

The screened IMF components are de-noised by lifting wavelet transform, and the
lifting algorithm is divided into split, prediction, and updating [22,23].
Step 1: Split. The input signal s(k), k € Z is divided into two wavelet subsets by parity.

so(k) =s(2k+1),ke Z )
se(k) =s(2k), ke Z
where s, (k) is the sequence of odd samples, s, (k) is the sequence of even samples, and k is
the number of signal samples.

Step 2: Prediction. Set P represents the prediction operator, using s, (k) to predict
the dual sequence s,(k), and the predicted signal s, (k) is represented as P[s.(k)]. The
prediction error of the even sample sequence is defined as the detail signal d(k), which is
the high-frequency component obtained after transformation.

d(k) = so(k) — Plse(k)] ®)

Step 3: Update. Set U represents the update operator that updates d(k) based on the
detail signal s, (k) to approximate the overall characteristics of the original signal more
closely while maintaining the scale properties of the original signal.

c(k) = se(k) — Uld(k)] ©)

where c(k) is the approximation signal and is the low-frequency component obtained from
the transform.

2.4. Soft Threshold De-Noising and Signal Reconstruction

Soft threshold de-noising is performed on the high-frequency components obtained
from the LWT algorithm.

R {sgn(W)(|W| —A) [W[>A (10)

W= 0 W[ <A

where W represents the initial wavelet coefficients corresponding to the high-frequency
component, W denotes the wavelet coefficients of the high-frequency component after
threshold processing, and A represents the threshold.

A =0cvVInN (11)

where ¢ is the standardized variance of the noise and N is the signal length.



Sensors 2024, 24, 1097

50f 17

After soft threshold de-noising, the de-noised signal is obtained by reconstructing
each high-frequency component d/(k) and low-frequency component c(k). The flowchart
of the CEEMDAN-LWT algorithm is shown in Figure 1.

Original signal

s()

|

Sliding intercept signal
S(tur)~s(twnr) n=0,1,2...n

|

CEEMDAN Decomposition
IMF; IMF: e IMFi rt)
[ | 1 | |
Choose IMF
based on correlation analysis
|
If R<0.1 IfR>0.2 If 0.1<R<0.2
Remove Save —
J ¥
Low frequency IMF High frequency IMF

l—l

LWT soft threshold denoising

|

Signal reconstruction —

|

Denoised signal

Figure 1. The flowchart of the CEEMDAN-LWT de-noising algorithm.

3. Simulation Signal Analysis

Matlab is used to simulate the FOG signal and verify the effectiveness of the CEEMDAN-
LWT de-noising algorithm. The simulated signal is a sinusoidal signal with frequency of
0.1 Hz, amplitude of 1 °/h, sampling frequency of 100 Hz, and sampling time of 50 s. Then,
the white noise is added; the mean value of the white noise is 0, and the variance of the
white noise is 1 °/h. The noisy signal as shown in Figure 2.

e

FOG noised singal deg/h
=)

—4

| | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sampling ponits

Figure 2. Schematic of the simulated noise signal.
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The noisy signal is subsequently conducted to CEEMDAN decomposition, resulting
in 11 IMF components and a residue, shown in Figure 3.
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Figure 3. The IMF components and a residue by CEEMDAN decomposition of the simulated signal.

In Figure 3, the frequencies of the IMF components gradually decrease from top to
bottom, and the last item, Res, is the remaining residuals. It shows that the noise mainly
exists in the IMF components at high frequencies, the IMF components at low frequencies
contain most of the effective signal, and IMFg and IMFg are nearly close to the simulated
signal. Then, the correlation between each of the obtained IMF components with the noise
signal is computed, and the results of the correlation analysis are shown in Table 1.

Table 1. Results of correlation analysis.

IMF Number Correlation IMF Number Correlation
IMF, 0.64 IMF 0.13
IMF, 0.47 IMFg 0.22
IMF5 0.35 IMFq 0.57
IMF4 0.27 IMFq 0.54
IMFs 0.19 IMFy; 0.10
IMFg 0.14 Res 0.06

According to the results of correlation analysis, the high-frequency IMF components:
IMF, IMF;, IMF3, and IMF4 with a correlation greater than 0.2 are extracted to conduct
LWT soft threshold de-noising. The IMF components with correlation coefficients less than
0.1 are removed and the other IMF components are retained. The signal is reconstructed
with the de-noised high-frequency IMF components and the remaining IMF components.
The obtained de-noised signal is compared with the noise signal, and the simulated signal.
The compared results are shown in Figure 4.
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Figure 4. De-noising results of the simulated signal based on the CEEMDAN-LWT method.

In Figure 4, the blue curve is the noise-containing signal, the red curve is the signal
obtained after de-noising using the CEEMDAN-LWT method, and the yellow curve is the
signal without noise in the simulation. The noise of the red curve is significantly reduced
compared with the blue curve, and the trend of the red curve is consistent with the yellow
curve. The red curve fluctuates around the yellow curve and without signal distortion
proves that the algorithm proposed in this study can filter out the noise in the signals well.

The frequency analysis is conducted on the signals before and after de-noising in
Figure 5.

=
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Figure 5. Frequency analysis of noise-containing and de-noised signals: (a) noise-containing signal
(b) denoised signal.

In Figure 5, the frequency of the signal after noise reduction is mainly distributed at
0~0.2 Hz, and the signal frequency set by the simulation signal is 0.1 Hz, so the effective
information of the signal is better retained. The signal is better decomposed to different
frequencies by the CEEMDAN-LWT and is more effective in removing the high-frequency
noise. The signal after noise reduction is close to the real signal, and the features of the
effective signal are retained to the maximum extent.

This study applies the signal-to-noise ratio (SNR), standard deviation (SD), deviation
(D) and root mean square error (RMSE) to identify the effectiveness of the signal denoising.
The equations for them are shown in below [24].

N 2 ;
SNR = 10log,, (Z (Z( ) (St) (1))2> (12)

RMSE = \/ %EN: L(5¢/(1) — si(i))? (13)
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D = XL () = (1) (19
1 N N a2
5D = /X5~ 40) (15)

where s(i) is the simulated signal, s;(7) is the noise-containing signal, s;(i) is the signal
after noise reduction, $;(i) is the average value of the signal after noise reduction, and
N is the number of sampling points. The larger the SNR, the smaller the RMSE, SD and
deviation, the better the de-noising effect. The SNR, RMSE, and deviation represent the
de-noising effect of the simulated noise-containing signal. The de-noising effect of the
signal is shown in Table 2.

Table 2. Compared results of denoising effect evaluation.

Method SNR (dB) RMSE (deg/h) D (deg/h) SD (deg/h)
CEEMDAN 8.52 0.287 0.012 0.85
LWT 7.68 0.311 0.016 0.87
CEEDAN-LWT 10.55 0.210 0.006 0.75

Table 2 compares CEEMDAN, LWT, and CEEMDAN-LWT methods with the de-
noising effects. The CEEMDAN method removes the first two high-frequency IMF compo-
nents directly, and the LWT method conducts a 5-level decomposition and soft thresholds
de-noising with the signal. According to SNR, SD, RESM, and D results, CEEMDAN-LWT
has the best evaluation effect, proving that the algorithm proposed in this study has a better
de-noising effect.

4. FOG Signal Analysis
4.1. Dynamic Pipe-Jacking Experiment

To verify the de-noising effect of the CEEMDAN-LWT method in the pipe-jacking
working environment, a PA-GS300 FOG was installed on the running pipe-jacking machine
to sample the FOG signal, as shown in Figure 6.

Figure 6. The FOG in pipe-jacking inertial guidance system.

The sampling frequency was 100 Hz. In the dynamic experiment period, the pipe-
jacking attitude is adjusted by the correction cylinders. The adjustment steps include setting
the pipe-jacking head up first, then adjusting the head to turn from left to right. Finally, the
pipe-jacking head is turned back and put down, as shown in Figure 7.

Sliding window data for the CEEMDAN-LWT de-noising method is chosen. The
x-axis gyroscope data is taken as an example, as shown in Figure 8.
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Figure 8. The x-axis gyroscope signal in the dynamic pipe-jacking experiment.

The original gyro signal is decomposed using the CEEMDAN method and 12 IMF
components and a residue are obtained, as shown in Figure 9.
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Figure 9. The CEEMDAN decomposed results of the FOG signals for the dynamic pipe-jacking experiment.

The correlation analysis of each IMF component with the FOG signal is shown
in Table 3.
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Table 3. Correlation analysis results of each IMF component.

IMF Number Correlation IMF Number Correlation
IMF; 0.53 IMFg 0.24
IMF, 0.43 IMF, 0.26
IMF5 0.26 IMFqg 0.19
IMF4 0.18 IMFq1 0.50
IMFs5 0.13 IMFy, 0.61
IMFg 0.15 Res 0.36
IMF 0.21

The high-frequency IMF, IMF;, and IMF3 whose correlation coefficients greater than
0.2 are screened and processed with LWT and soft threshold de-noising. The level of
decomposition is 5. The IMF components with correlation coefficients of less than 0.1 are
removed, and the signal is reconstructed. The de-noised signals are obtained, as shown

in Figure 10.

Original signal

Ceemdan-lwt denoised signal

[]

=

|
(8]

Gyro x deg/s

T

0 1000 2000 3000 4000 5000 6000 7000 8000

10 I I I | I I | I

S W

Gyro y deg/s

-5 | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000 8000

9000

10,000

Gyro z deg/s

1 1 1 1 1

|
=%

0 1000 2000 3000 4000 5000 6000 7000 8000
Sampling points

9000

10,000

Figure 10. Denoising results of the FOG signal based on the CEEMDAN-LWT method in the dynamic

pipe-jacking experiment.

Figure 10 shows that the de-noised signal better retains the characteristics of the
original signal and filters out most of the noise, which proves that the de-noising method
proposed in this paper is suitable for the FOG signals. The frequency analysis of the

noise-containing signal and the de-noised signal are shown in Figure 11.

Figure 11a shows that the frequency of the FOG signal is distributed from 0-50 Hz, and
the main frequency is distributed near 0 Hz, 21 Hz, 25 Hz, and 37 Hz. During the dynamic
experiment, the attitude adjustment is slow, and the effective signal is mainly distributed
near 0 Hz. Figure 11b shows that the frequency of the de-noised signal is mainly distributed
between 0-1 Hz, and the algorithm filters out most of the high-frequency noise signals,
which proves the effectiveness of the algorithm proposed in this paper. The de-noising

effect is analyzed and compared in Table 4.



Sensors 2024, 24, 1097

11 of 17

pitch deg

|
=
n

N
I3 |
N =

% x10
% T T T T T T T T T
g2 -
g
=
E‘O Ld podaded J-LA.LJLA ull T N Y LJ_A..L i s
<0 5 10 15 20 25 30 35 40 45 50
Frequency Hz
B x10° g0 @)
- T 3 T T T T T
£, 2 1
‘§ 1
= 0
= /I 0 1 0.5 1 1 1 1 1 1 1 1
g0
< 0 5 10 15 20 25 30 35 40 45 50
Frequency Hz
(b)

Figure 11. Frequency analysis of the noise-containing and de-noised signals: (a) noise-containing
signal (b) de-noised signal.

Table 4. Comparison of denoising effect in the dynamic pipe-jacking experiment.

Method SNR (dB) SD (deg/s)

CEEMDAN 13.01 1.28 x 10~°
LWT 11.94 1.30 x 10~®
CEEDAN-LWT 18.18 1.19 x 107°

Table 4 compares the de-noising effect of the FOG signal processed using the CEEM-
DAN, LWT, and CEEMDAN-LWT methods. The CEEMDAN method removes the first two
high-frequency IMF components of the FOG signal directly, and the LWT method performs
a 5-level decomposition and soft thresholding of the FOG signal. According to the SNR and
SD results, CEEMDAN-LWT shows the best de-noising effect. It proves that the algorithm
proposed in this study effectively improves the de-noising effect. The de-noised signal
is solved with inertial navigation to obtain the pipe-jacking attitude, and the results are
as follows.

In Figure 12, the blue curve is the result of the inertial navigation solving of the FOG
signal, and the red curve is the result of the inertial navigation solving of the FOG signal
after de-noising using the CEEMDAN-LWT algorithm. The pitch angle of the FOG signal
changes from —2.4° to about —0.5°and then back to —2.4°, which is consistent with the
trend of the attitude adjustment, proving that the de-noised signal is not distorted. The de-
tailed graph shows that the fluctuation in the pitch angle solved using the CEEMDAN-LWT
algorithm is minor and smoother. It proves that the algorithm proposed in this paper can
filter out random noise better.

——FOG-INS —-—-—~ FOG-INS after CEEMDAN-LWT |\~

=]

2000 4000 6000 8000 10,000
sampling points

Figure 12. Pitch angle solving results of the dynamic pipe-jacking experiment.
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In Figure 13, the roll angle is set with no change, and the roll angle after the CEEMDAN-LWT
algorithm fluctuates around 0.05°. The trend of the roll angle change before and after de-
noising is consistent, which proves that there is no distortion of the FOG signal after
de-noising. In the detailed graph, the fluctuation of the red curve is reduced compared with
that of the blue curve, which proves that the algorithm proposed in this study is effective.

0.060
2 0.055
0.050
E 0.045

0.040 ——FOG-INS - FOG-INS after CEEMDAN-LWT

| | | | |
2000 4000 6000 8000 10,000
Sampling points
Figure 13. Roll angle solving results of the dynamic pipe-jacking experiment.

In Figure 14, the heading angle changes from —0.2° to —0.7° and then to 0.7° and
finally to near 0°, which is consistent with the trend of the attitude adjustment from the
left to the right, which proves that there is no distortion after de-noising. In the detailed
graph, the heading angle after de-noising is smoother compared with the fluctuation before
de-noising, and the algorithm effectively filters out part of the random noise. The attitude
de-noising effect of the pipe-jacking dynamic experiment is evaluated as follows.

I ! I !
05 FOG-INS -~ FOG-INS after CEEMDAN-LWT 7

1 1 1
2000 4000 6000 8000 10,000
Sampling points

Heading angle deg
B
T

|

=

N
T

>

Figure 14. Heading angle solving results of the dynamic pipe-jacking experiment.

Table 5 compares the SD of the attitude before and after de-noising; the SD of the
attitude after de-noising is reduced, which proves that the proposed algorithm improves
the accuracy of attitude results. The SNR results of the de-noised attitude are improved,
which proves that the proposed algorithm effectively filters out the random noise.

Table 5. Evaluation of the attitude denoising effect in the dynamic pipe-jacking experiment.

Attitude SD (deg/s) SNR (dB)

Pitch 0.4469 -
Original signal Roll 0.0077 -

Heading 0.0036 -

Pitch 0.4461 28.3121
Denoised signal Roll 0.0076 33.5005

Heading 0.0035 10.0399

4.2. Pipe-Jacking Environmental Interference Experiment

A pipe-jacking environmental interference experiment was conducted to verify the
adaptive de-noising effect of the CEEMDAN-LWT algorithm on the FOG during pipe-
jacking operations. The sampling frequency was 100 Hz. The 10,000 sample points were
intercepted and processed by the algorithm. The frequency converter and the motor were
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turned on to rotate the pipe jacking cutter at 4650 sampling points. The three-axis data of
the FOG after the de-noising by the proposed algorithm are shown in Figure 15.

Original signal Ceemdan-lwt de-noised signal

—4

2 210 T T T T T T T T T
1
B 1F _
D
=
= 0
e
2
&oIr 7
) ! ! L ! L ! L ! L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
-
4210 T T T T T T T T T
i
%o 2 —
% A
0 v
2
ST
4 L 1 L 1 L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
5
4210 T T T
2
e 2
=
N st o dan i & 'w
£
Gt
4 L ! L ! L ! L ! L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

Sampling points

Figure 15. Denoising results of the FOG signal based on the CEEMDAN-LWT method in pipe-jacking
environmental interference experiment.

The blue curve in Figure 15 is the original signal measured by the FOG, and the noise
is enhanced during the pipe-jacking operation at 4650 sampling points. The red curve is the
signal after the de-noising algorithm, and the signal amplitude is consistent after de-noising
in different environments, proving that the algorithm proposed in this paper has a certain
degree of adaptivity. Meanwhile, the proposed algorithm filters out most of the random
noise. The attitude results are compared before and after de-noising in Figure 16.

— Original signal Ceemdan-lwt denoised signal
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n
S

T
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Figure 16. Attitude solving results of the pipe-jacking environmental interference experiment.



Sensors 2024, 24, 1097

14 of 17

The blue curve in Figure 16 is the attitude result before de-noising. The pipe-jacking
operation starts at 4650 sampling points, and the fluctuation of the attitude results is
obviously increased. The red curve is the result of attitude solving using the algorithm
proposed in this study, and the noise of attitude is obviously reduced, which proves that
the de-noising algorithm proposed in this study can effectively filter out the environmental
noise. Table 6 is a statistical analysis of the attitude results.

Table 6. Statistics of attitude results in the pipe-jacking environmental interference experiment.

. . Initial Ultimate Average Absolute . o
Signal Attitude Angle Attitude/deg Attitude/deg Attitude/deg Error/deg Relative Exror/%

—0.9873 —0.9896 —0.9880 —0.0070~0.0073 —0.74~0.71

Original signal 1.7992 1.8057 1.8024 —0.0140~0.0373 —0.78~2.07
—20.5249 —20.5111 —20.5188 0~0.0138 —0.07~0

—0.9873 —0.9874 —0.9875 —0.0043~0.0043 —0.44~0.44

Cdii\)/[i];ﬁfi{rgf 1.7992 1.8005 1.8021 —0.0068~0.0140 —0.38~0.79
& —20.5249 —20.5118 —20.5186 0~0.0131 —0.06~0

In Table 6, the initial attitude is the result of the attitude at the 4650th sampling point.
The ultimate attitude is the result of the attitude at the 10,000th sampling point. The
average attitude is the average value of between 4650 and 10,000 sampling points. The
pipe-jacking attitude remains static throughout the environmental interference experiment.
In theory, the pipe-jacking attitude should not change during the experiment, and the initial
attitude value represents the true value. However, due to random noise and gyro drift
error, the attitude will drift. By comparing the initial and ultimate attitudes before and after
denoising, it is evident that the proposed method reduces a part of the drift error caused by
random noise. Table 6 also shows that the average attitude of the CEEMDAN-LWT method
is closer to the initial attitude, and the absolute error of the pitch angle is reduced by 39.86%
relative to the original signal, and the roll and heading angle are reduced by 59.45% and
14.29%. The maximum relative error of the pitch angle is improved from —0.74% to —0.44%,
the roll angle is improved from 2.07% to 0.79%, and the heading angle is improved from
—0.07% to —0.06%. It is proven that the CEEMDAN-LWT algorithm proposed in this study
filters out the random noise effectively and improves the accuracy of the attitude results.
The de-noising effect is evaluated and compared in Table 7.

Table 7. Evaluation of the attitude denoising effect in the pipe-jacking environmental interference

experiment.

Method Attitude SNR (dB) SD (deg) D (deg)
Pitch 13.4520 0.0010 —0.0008

CEEMDAN Roll 13.1435 0.0023 0.0024
Heading 21.6513 0.0044 0.0063
Pitch 13.3676 0.0011 —0.0009

LWT Roll 12.6715 0.0025 0.0029
Heading 21.7531 0.0045 0.0065
Pitch 13.5926 0.0009 —0.0002

CEEDAN-LWT Roll 13.2295 0.0018 0.0012
Heading 22.3470 0.0042 0.0063

In Table 7, the CEEMDAN-LWT algorithm has the best de-noising effect compared
to the CEEMDAN and LWT algorithms, but the heading angle de-noising effect is weak.
Finally, the performance of gyro data before and after de-noising was analyzed using Allan
variance as shown in Figure 17.

The blue curve in Figure 17 is the Allan variance curve of the original signal, and the red
curve is the Allan variance curve of the CEEMDAN-LWT de-noised signal. Figure 17 shows
that the red curves are all in the lower left of the blue curves, which indicates that the noise
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of the FOG signal de-noised using CEEMDAN-LWT is reduced. Therefore, the proposed
de-noising method is effective. The specific error indicators are shown in Table 8.

— Original signal

CEEMDAN-LWT de-noised signal

Gyro x /71( 7) (°)h

Gyroy o ,(7) (°)h
Gyroz (rA( 7) (°)h

t/s t/'s

(b) (©)

Figure 17. Allan variance curve comparison of the pipe-jacking environmental interference experi-
ment: (a) The Allan variance of Gryo X, (b) the Allan variance of Gryo Y, (c) the Allan variance of
Gryo Z.

Table 8. Comparison of Allan variance between the original signal and CEEMDAN-LWT denoised
signal.

Original Signal CEEMDAN-LWT Denoised Signal
Gyro axial Gyro x Gyroy Gyro z Gyro x Gyroy Gyro z
Q/(" 0.003 0.031 0.003 - - -
N/deg/h!/2 3.436 x 1073 7.809 x 1073 8.740 x 1074 1.118 x 1073 2.703 x 1073 2.760 x 1074
B/deg/h 1.762 x 1072 7.964 x 10~* 7.382 x 107* 1.694 x 102 5.446 x 1074 6.182 x 1074
K/deg/h%/2 8.359 x 1072 9.730 x 1072 4484 x 1072 7.461 x 1072 8.655 x 1072 4441 x 1072

In Table 8, Q is quantization noise, B is bias instability, N is random walk, and K is the
rate of the random walk. The specific noise indicators of the CEEMDAN-LWT denoised
signal become smaller, where the value of Q is very small and almost negligible. It is proven
that the CEEMDAN-LWT method proposed in this study reduces the noise of the FOG
signal effectively.

5. Conclusions

According to the characteristics of the FOG signals in the pipe-jacking inertial guid-
ance system, this study proposes a hybrid de-noising method based on CEEMDAN-LWT.
The FOG signal is decomposed by CEEMDAN, the main IMF components are screened
by correlation coefficients, the high-frequency IMF components in the screening are de-
noised using LWT and soft threshold de-noising, and finally, the signal is reconstructed.
Simulation, dynamic, and environmental interference experiments were conducted, which
compared the analysis of the frequency and the evaluation of the de-noising effect using the
CEEMDAN and LWT de-noising methods. The results show that the method proposed in
this study can effectively reduce the influence of random noise on the signal and accurately
reflect the changing characteristics of the signal. The de-noised pipe-jacking attitude in
the environmental interference experiment was closer to the theoretical value, the absolute
error of the pitch angle was reduced by 39.86%, the roll angle was reduced by 59.45%,
and the heading angle was reduced by 14.29%. The maximum relative error of the pitch
angle was improved from —0.74% to —0.44%, the roll angle was improved from 2.07% to
0.79%, and the heading angle was improved from —0.07% to —0.06%. In conclusion, the
CEEMDAN-LWT de-noising method proposed in this study combines the CEEMDAN and
LWT decomposition features, which have the advantages of complete decomposition, fast
speed, and high-resolution. At the same time, the method achieves real-time processing by
using a sliding window. The study results show that the proposed method could filter out
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most of the random noise of the FOG signal in the pipe-jacking inertial guidance system
and improve the accuracy of the pipe-jacking attitude results, which has better engineering
application value.
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