Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = FG cylinder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4663 KB  
Article
Variational Method for Vibration Analysis of Elliptic Cylinders Reinforced with Functionally Graded Carbon Nanotubes
by Qingtao Gong, Tao Liu, Yao Teng, Binjie Ma and Xin Li
Materials 2025, 18(1), 43; https://doi.org/10.3390/ma18010043 - 26 Dec 2024
Viewed by 820
Abstract
This study introduces a novel analytical framework for investigating the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) elliptical cylindrical shells under arbitrary boundary conditions. Unlike previous studies that focused on simplified geometries or specific boundary conditions, this work combines the least-squares [...] Read more.
This study introduces a novel analytical framework for investigating the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) elliptical cylindrical shells under arbitrary boundary conditions. Unlike previous studies that focused on simplified geometries or specific boundary conditions, this work combines the least-squares weighted residual method (LSWRM) with an adapted variational principle, addressing high-order vibration errors and ensuring continuity across structural segments. The material properties are modeled using an extended rule of mixtures, capturing the effects of carbon nanotube volume fractions and distribution types on structural dynamics. Additionally, virtual boundary techniques are employed to generalize elastic boundary conditions, enabling the analysis of complex boundary-constrained structures. Numerical validation against existing methods confirms the high accuracy of the proposed framework. Furthermore, the influence of geometric parameters, material characteristics, and boundary stiffness on vibration behavior is comprehensively explored, offering a robust and versatile tool for designing advanced FG-CNTRC structures. This innovative approach provides significant insights into the optimization of nanoscale reinforced composites, making it a valuable reference for engineers and researchers in aerospace, marine, and construction industries. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

16 pages, 4524 KB  
Article
Two-Dimensional C-V Heat Conduction Investigation of an FG-Finite Axisymmetric Hollow Cylinder
by Amir Najibi and Guang-Hui Wang
Symmetry 2023, 15(5), 1009; https://doi.org/10.3390/sym15051009 - 30 Apr 2023
Cited by 3 | Viewed by 2823
Abstract
In the present work, we implement a graded finite element analysis to solve the axisymmetric 2D hyperbolic heat conduction equation in a finite hollow cylinder made of functionally graded materials using quadratic Lagrangian shape functions. The graded FE method is verified, and the [...] Read more.
In the present work, we implement a graded finite element analysis to solve the axisymmetric 2D hyperbolic heat conduction equation in a finite hollow cylinder made of functionally graded materials using quadratic Lagrangian shape functions. The graded FE method is verified, and the simple rule of the mixture with power-law volume fraction is found to enhance the effective thermal properties’ gradation along the radial direction, including the thermal relaxation time. The effects of the Vernotte numbers and material distributions on temperature waves are investigated in depth, and the results are discussed for Fourier and non-Fourier heat conductions, and homogeneous and inhomogeneous material distributions. The homogeneous cylinder wall made of SUS304 shows faster temperature wave velocity in comparison to the ceramic-rich cylinder wall, which demonstrates the slowest one. Furthermore, the temperature profiles along the radial direction when n = 2 and n = 5 are almost the same in all Ve numbers, and by increasing the Ve numbers, the temperature waves move slower in all the material distributions. Finally, by tuning the material distribution which affects the thermal relaxation time, the desirable results for temperature distribution can be achieved. Full article
Show Figures

Figure 1

21 pages, 18847 KB  
Article
Numerical Simulation of Stresses in Functionally Graded HCS-MgO Cylinder Using Iterative Technique and Finite Element Method
by Sandeep Kumar Paul, Parth Dinesh Mehta, Manoj Sahni and Ernesto León-Castro
Materials 2022, 15(13), 4537; https://doi.org/10.3390/ma15134537 - 28 Jun 2022
Cited by 3 | Viewed by 1984
Abstract
In this study, a thick hollow axisymmetric functionally graded (FG) cylinder is investigated for steady-state elastic stresses using an iteration technique and the finite element method. Here, we have considered a functionally graded cylinder tailored with the material property, namely, Young’s modulus, varying [...] Read more.
In this study, a thick hollow axisymmetric functionally graded (FG) cylinder is investigated for steady-state elastic stresses using an iteration technique and the finite element method. Here, we have considered a functionally graded cylinder tailored with the material property, namely, Young’s modulus, varying in an exponential form from the inner to outer radius of the cylinder. A mathematical formulation for stress analysis of functionally graded cylinder under internal and external pressure conditions is developed using constitutive relations for stress–strain, strain–displacement relations and the equation of equilibrium. The effect of the in-homogeneity parameter on radial displacement, radial and tangential stresses in a functionally graded cylinder made up of a High Carbon Steel (HCS) metal matrix, reinforced with Magnesium Oxide (MgO) ceramic is analyzed. The iterative method implemented is fast and converges to the solution which can be further improved by considering a higher number of iterations. This is depicted graphically by using radial displacement and stresses in a pressurized functionally graded cylinder obtained for the first two iterations. An iterative solution for non-FGM (or homogeneous material) is validated using the finite element method. The mechanical responses of the functionally graded cylinder obtained from the iterative method and the finite element method are then compared and found to be in good agreement. Results are presented in graphical and tabular form along with their interpretations. Full article
Show Figures

Figure 1

23 pages, 1093 KB  
Article
Secondary Creep Analysis of FG Rotating Cylinder with Exponential, Linear and Quadratic Volume Reinforcement
by Manoj Sahni, Parth Dinesh Mehta, Ritu Sahni, Ernesto León-Castro and Luis F. Espinoza-Audelo
Materials 2022, 15(5), 1803; https://doi.org/10.3390/ma15051803 - 28 Feb 2022
Cited by 9 | Viewed by 2198
Abstract
Creep is an irreversible time-dependent deformation in which a material under constant mechanical stress and elevated temperature for a considerably prolonged period of time, starts to undergo permanent deformation. Creep deformation occurs in three stages namely, primary, secondary and tertiary. Out of these [...] Read more.
Creep is an irreversible time-dependent deformation in which a material under constant mechanical stress and elevated temperature for a considerably prolonged period of time, starts to undergo permanent deformation. Creep deformation occurs in three stages namely, primary, secondary and tertiary. Out of these three stages, secondary or steady state creep is particularly an area of engineering interest as it has almost a constant creep rate. Creep deformation plays a significant role in understanding effective service life of an engineering component working under high temperature conditions as such components such as super-heater and re-heater tubes and headers in a boiler, jet engines operating at temperature as high as 1200 C, usually experience a failure or rupture due to creep phenomenon. Design engineers keep a close attention on working stress conditions and elevated temperature under which an engineering component is expected to work as these conditions determine the onset of creep behavior in an engineering component. By recognizing the parameters of material response to creep behavior, engineers can analyse the useful service life and hazardous working conditions for an engineering components. Recognizing the creep phenomenon as high temperature design limitation, ASME Boiler and Pressure Vessel Code have provided guidelines on maximum allowable stresses for materials to be used in creep range. One of the criteria for determination of allowable stresses is 1% creep deformation of material in 100,000 h of service. Thus, the study of creep behavior in engineering components pertaining to high stress and temperature working conditions is very important as it affects the reliability and performance of the engineering components. The aim of our study is to understand the behavior of secondary creep deformation so that an advanced reinforced functionally graded material with better creep resistance, can be designed. In this paper, a secondary creep analysis of functionally graded (FG) thick-walled rotating cylinder under internal and external pressure is conducted. The novelty of the model intends to specify secondary creep stresses and strains by employing exponential, linear and quadratic volume reinforcement for SiCp ceramic in Al metal matrix in radial direction. This will help us to understand the effect of volume reinforcement in FG cylinder under internal/external pressure and rotating centrifugal body force by obtaining secondary creep stresses and strains. The response of the FG cylinder with isotropic material is analyzed and the solution for stress–strain rates in radial and tangential directions are obtained in closed form. Comparison of steady state creep stresses and strains under exponential, linear and quadratic volume reinforcement profiles are discussed and presented graphically. Full article
(This article belongs to the Special Issue Design and Manufacturing of Composite Structures)
Show Figures

Figure 1

11 pages, 422 KB  
Article
A Dynamic Programming Setting for Functionally Graded Thick-Walled Cylinders
by Hassan Mohamed Abdelalim Abdalla, Daniele Casagrande and Francesco De Bona
Materials 2020, 13(18), 3988; https://doi.org/10.3390/ma13183988 - 9 Sep 2020
Cited by 17 | Viewed by 2664
Abstract
Material property variation in non-homogeneous internally pressurized thick-walled cylinders is investigated within the context of dynamic programming theory. The material is assumed to be linear, elastic, isotropic, and functionally graded in the radial direction. Based on the plane stress hypothesis, a state space [...] Read more.
Material property variation in non-homogeneous internally pressurized thick-walled cylinders is investigated within the context of dynamic programming theory. The material is assumed to be linear, elastic, isotropic, and functionally graded in the radial direction. Based on the plane stress hypothesis, a state space formulation is given and the optimal control problem is stated and solved by means of Pontryagin’s Principle for different objective functionals. Optimal Young’s modulus distribution is found to be piecewise linear along the radial domain. A brief digression on the possible existence of switching points is addressed. Finally, a numerical example is performed within a special class of derived optimal solutions, showing promising results in terms of equivalent stress reduction with respect to the most used variations in literature. Full article
(This article belongs to the Special Issue Functionally Graded Materials: Developments and Applications)
Show Figures

Figure 1

24 pages, 3181 KB  
Article
Thermal Buckling of Nanocomposite Stiffened Cylindrical Shells Reinforced by Functionally Graded Wavy Carbon Nanotubes with Temperature-Dependent Properties
by Mohammad Nejati, Rossana Dimitri, Francesco Tornabene and Mohammad Hossein Yas
Appl. Sci. 2017, 7(12), 1223; https://doi.org/10.3390/app7121223 - 27 Nov 2017
Cited by 71 | Viewed by 6747
Abstract
We study the thermal buckling behavior of cylindrical shells reinforced with Functionally Graded (FG) wavy Carbon NanoTubes (CNTs), stiffened by stringers and rings, and subjected to a thermal loading. The equilibrium equations of the problem are built according to the Third-order Shear Deformation [...] Read more.
We study the thermal buckling behavior of cylindrical shells reinforced with Functionally Graded (FG) wavy Carbon NanoTubes (CNTs), stiffened by stringers and rings, and subjected to a thermal loading. The equilibrium equations of the problem are built according to the Third-order Shear Deformation Theory (TSDT), whereas the stiffeners are modeled as Euler Bernoulli beams. Different types of FG distributions of wavy CNTs along the radial direction of the cylinder are herein considered, and temperature-dependent material properties are estimated via a micromechanical model, under the assumption of uniform distribution within the shell and through the thickness. A parametric investigation based on the Generalized Differential Quadrature (GDQ) method aims at investigating the effects of the aspect ratio and waviness index of CNTs on the thermal buckling of FG nanocomposite stiffened cylinders, reinforced with wavy single-walled CNTs. Some numerical examples are here provided in order to verify the accuracy of the proposed formulation and to investigate the effects of several parameters—including the volume fraction, the distribution pattern of wavy CNTs, and the cylinder thickness—on the thermal buckling behavior of the stiffened cylinders made of CNT-reinforced composite (CNTRC) material. Full article
Show Figures

Graphical abstract

Back to TopTop