Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Eudraguard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1418 KiB  
Article
A Green Bioactive By-Product Almond Skin Functional Extract for Developing Nutraceutical Formulations with Potential Antimetabolic Activity
by Patrizia Picerno, Lucia Crascì, Patrizia Iannece, Tiziana Esposito, Silvia Franceschelli, Michela Pecoraro, Virgilio Giannone, Anna Maria Panico, Rita Patrizia Aquino and Maria Rosaria Lauro
Molecules 2023, 28(23), 7913; https://doi.org/10.3390/molecules28237913 - 3 Dec 2023
Cited by 7 | Viewed by 2808
Abstract
(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a “green” dry aqueous extract [...] Read more.
(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a “green” dry aqueous extract from Sicilian almond peels, a waste product of the food industry, and to develop healthy nutraceuticals with natural ingredients. Eudraguard® Natural is a natural coating polymer chosen to develop atomized formulations that improve the technological properties of the extract. (2) Methods: the antioxidant and free radical scavenger activity of the extract was rated using different methods (DPPH assay, ABTS, ORAC, NO). The metalloproteinases of the extracts (MMP-2 and MMP-9), the enhanced inhibition of the final glycation products, and the effects of the compounds on cell viability were also tested. All pure materials and formulations were characterized using UV, HPLC, FTIR, DSC, and SEM methods. (3) Results: almond peel extract showed appreciable antioxidant and free radical activity with a stronger NO inhibition effect, strong activity on MMP-2, and good antiglycative effects. In light of this, a food supplement with added health value was formulated. Eudraguard® Natural acted as a swelling substrate by improving extract solubility and dissolution/release (4) Conclusions: almond peel extract has significant antioxidant activity and MMP/AGE inhibition effects, resulting in an optimal candidate to formulate safe microsystems with potential antimetabolic activity. Eudraguard® Natural is capable of obtaining spray-dried microsystems with an improvement in the extract‘s biological and technological characteristics. It also protects the dry extract from degradation and oxidation, prolonging the shelf life of the final product. Full article
Show Figures

Figure 1

35 pages, 9400 KiB  
Review
Colon Delivery of Nutraceutical Ingredients by Food-Grade Polymeric Systems: An Overview of Technological Characterization and Biological Evaluation
by Salvatore Rizzo, Elide Zingale, Alessia Romeo, Rosamaria Lombardo and Rosario Pignatello
Appl. Sci. 2023, 13(9), 5443; https://doi.org/10.3390/app13095443 - 27 Apr 2023
Cited by 7 | Viewed by 3217
Abstract
The development of food-grade carriers based on EFSA and/or FDA-approved polymeric materials is an area of growing interest for the targeted delivery of bioactive compounds to the colon. Many nutraceuticals have shown promise in the local treatment of conditions that threaten quality of [...] Read more.
The development of food-grade carriers based on EFSA and/or FDA-approved polymeric materials is an area of growing interest for the targeted delivery of bioactive compounds to the colon. Many nutraceuticals have shown promise in the local treatment of conditions that threaten quality of life, such as ulcerative colitis, Crohn’s disease, colorectal cancer, dysbiosis and other problems affecting the gut and colon. Nevertheless, their bioavailability is often limited due to poor solubility, rapid metabolism and low permeability, as well as undesirable local side effects. Encapsulation in carriers, which can protect the active ingredient from degradation and improve absorption and targeted administration in the colon, is one way to overcome these limitations. The technological characterization of these systems is important to assess their efficacy, safety and stability. In particular, morphology, size and surface properties influence their actions and interaction with the bio-phase. Meanwhile, encapsulation efficiency, profile and in vitro release kinetics are key parameters to assess the ability to reach the target site. This paper proposes a recent review of food-grade polymer-based systems for colorectal targeting of bioactive substances, focusing on their technological characterization and assessment of stability and biological activity, which are important in determining their full bench-to-bed potential. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Modified Drug Release Systems)
Show Figures

Figure 1

17 pages, 2953 KiB  
Article
Eudraguard® Natural and Protect: New “Food Grade” Matrices for the Delivery of an Extract from Sorbus domestica L. Leaves Active on the α-Glucosidase Enzyme
by Maria Rosaria Lauro, Patrizia Picerno, Silvia Franceschelli, Michela Pecoraro, Rita Patrizia Aquino and Rosario Pignatello
Pharmaceutics 2023, 15(1), 295; https://doi.org/10.3390/pharmaceutics15010295 - 16 Jan 2023
Cited by 3 | Viewed by 2456
Abstract
(1) Background: Eudraguard® Natural (EN) and Protect (EP) are polymers regulated for use in dietary supplements in the European Union and the United States to carry natural products, mask unpleasant smells and tastes, ameliorate product handling, and protect products from moisture, light, [...] Read more.
(1) Background: Eudraguard® Natural (EN) and Protect (EP) are polymers regulated for use in dietary supplements in the European Union and the United States to carry natural products, mask unpleasant smells and tastes, ameliorate product handling, and protect products from moisture, light, and oxidation. Moreover, EN and EP can control the release of encapsulated compounds. The aim of this work was the development, preparation, and control of Eudraguard® spray-drying microparticles to obtain powders with easy handling and a stable dietary supplement containing a polar functional extract (SOE) from Sorbus domestica L. leaves. (2) Methods: SOE was characterized using HPLC, NMR, FTIR, DSC, and SEM methods. Furthermore, the SOE’s antioxidant/free radical scavenging activity, α-glucosidase inhibition, MTT assay effect on viability in normal cells, and shelf life were evaluated in both the extract and final formulations. (3) Results: The data suggested that SOE, rich in flavonoids, is a bioactive and safe extract; however, from a technological point of view, it was sticky, difficult to handle, and had low aqueous solubility. Despite the fact that EN and EP may undergo changes with spray-drying, they effectively produced easy-to-handle micro-powders with a controlled release profile. Although EN had a weaker capability to coat SOE than EP, EN acted as a substrate that was able to swell, drawing in water and improving the extract solubility and dissolution/release; however, EP was also able to carry the extract and provide SOE with controlled release. (4) Conclusion: Both Eudraguard® products were capable of carrying SOE and improving its antioxidant and α-glucosidase inhibition activities, as well as the extract stability and handling. Full article
Show Figures

Figure 1

16 pages, 2508 KiB  
Article
Gastro-Resistant Microparticles Produced by Spray-Drying as Controlled Release Systems for Liposoluble Vitamins
by Francesca Terracina, Roberto Caruana, Francesco Paolo Bonomo, Francesco Montalbano and Mariano Licciardi
Pharmaceutics 2022, 14(7), 1480; https://doi.org/10.3390/pharmaceutics14071480 - 15 Jul 2022
Cited by 7 | Viewed by 2490
Abstract
In the present study, gastro-resistant microparticles (MPs) were produced using the spray-drying technique as controlled-release systems for some model liposoluble vitamins, including retinyl-palmitate, retinyl-acetate, β-carotene, cholecalciferol and α-tocopherol. The gastroprotective action of three different gastro-resistant excipients, the anionic methacrylic copolymer (Eudraguard®® Biotic, [...] Read more.
In the present study, gastro-resistant microparticles (MPs) were produced using the spray-drying technique as controlled-release systems for some model liposoluble vitamins, including retinyl-palmitate, retinyl-acetate, β-carotene, cholecalciferol and α-tocopherol. The gastroprotective action of three different gastro-resistant excipients, the anionic methacrylic copolymer (Eudraguard®® Biotic, E1207), the cellulose acetate phthalate (CAP) and whey proteins (WPs), was compared. The latter was used to produce a novel delivery system manufactured with only food-derived components, such as milk, and showed several improvements over the two synthetic gastro-resistant agents. Scanning electron microscopy (SEM) images showed a quite homogeneous spherical shape of all microparticle batches, with an average diameter between 7 and 15 μm. FTIR analysis was used to evaluate the effective incorporation of vitamins within the microparticles and the absence of any degradation to the components of the formulation. The comparison graphs of differential scanning calorimetry (DSC) confirmed that the spray drying technique generates a solid in which the physical interactions between the excipients and the vitamins are very strong. Release studies showed a prominent pH-controlled release and partially a delayed-release profile. Ex vivo permeation studies of retinyl palmitate, retinyl acetate and α-tocopherol revealed greater transmucosal permeation capacity for microparticles produced with the WPs and milk. Full article
(This article belongs to the Special Issue Advance in Development of Patient-Centric Dosage Form)
Show Figures

Figure 1

22 pages, 4469 KiB  
Article
Development, Optimization and Characterization of Eudraguard®-Based Microparticles for Colon Delivery
by Claudia Curcio, Antonio S. Greco, Salvatore Rizzo, Lorena Saitta, Teresa Musumeci, Barbara Ruozi and Rosario Pignatello
Pharmaceuticals 2020, 13(6), 131; https://doi.org/10.3390/ph13060131 - 24 Jun 2020
Cited by 14 | Viewed by 3841
Abstract
Development of pH-dependent systems for colon delivery of natural active ingredients is an attractive area of research in the field of nutraceutical products. This study was focused on Eudraguard® resins, that are methacrylate copolymers approved as “food grade” by European Commission and [...] Read more.
Development of pH-dependent systems for colon delivery of natural active ingredients is an attractive area of research in the field of nutraceutical products. This study was focused on Eudraguard® resins, that are methacrylate copolymers approved as “food grade” by European Commission and useful for the production of food supplements. In particular, Eudraguard® Biotic (EUG-B), characterized by a pH-dependent solubility and Eudraguard® Control (EUG-C), whose chemical properties support a prolonged release of the encapsulated compounds, were tested. To obtain EUG microparticles, different preparation techniques were tested, in order to optimize the preparation method and observe the effect upon drug encapsulation and specific colonic release. Unloaded microparticles were initially produced to evaluate the influence of polymer characteristics on the formulation process; subsequently microparticles loaded with quercetin (QUE) as a low solubility model drug were prepared. The characterization of microparticles in the solid-state (FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry) indicated that QUE was uniformly dispersed in a non-crystalline state in the polymeric network, without strong signs of chemical interactions. Finally, to assess the ability of EUG-C and EUG-B to control the drug release in the gastric environment, and to allow an increased release at a colonic level, suitable in vitro release tests were carried out by simulating the pH variations along the gastro-intestinal tract. Among the evaluated preparation methods, those in which an aqueous phase was not present, and in particular the emulsion-solvent evaporation method produced the best microparticle systems. The in vitro tests showed a limited drug release at a gastric level and a good specific colon release. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

14 pages, 8810 KiB  
Article
Targeted Release of Probiotics from Enteric Microparticulated Formulations
by Cristina Yus, Ruben Gracia, Ane Larrea, Vanesa Andreu, Silvia Irusta, Victor Sebastian, Gracia Mendoza and Manuel Arruebo
Polymers 2019, 11(10), 1668; https://doi.org/10.3390/polym11101668 - 13 Oct 2019
Cited by 32 | Viewed by 5726
Abstract
The development of advanced probiotic delivery systems, which preserve bacteria from degradation of the gastrointestinal tract and achieve a targeted release mediated by pH-independent swelling, is of great interest to improve the efficient delivery of probiotic bacteria to the target tissue. Gram-positive and [...] Read more.
The development of advanced probiotic delivery systems, which preserve bacteria from degradation of the gastrointestinal tract and achieve a targeted release mediated by pH-independent swelling, is of great interest to improve the efficient delivery of probiotic bacteria to the target tissue. Gram-positive and Gram-negative bacteria models (Lactobacillus acidophilus (Moro) Hansen and Mocquot (ATCC® 4356™) and Escherichia coli S17, respectively) have been successfully encapsulated for the first time in pH-independent microparticulate polymethacrylates (i.e., Eudraguard biotic) used for the targeted delivery of nutraceuticals to the colon. These bacteria have also been encapsulated within the mucoadhesive polymethacrylate Eudragit RS 100 widely used as targeted release formulation for active pharmaceutical ingredients. The enteric microparticles remained unaltered under simulated gastric conditions and released the contained viable microbial cargo under simulated intestinal conditions. Buoyancies of 90.2% and 57.3% for Eudragit and Eudraguard microparticles, respectively, and long-term stability (5 months) for the encapsulated microorganisms were found. Cytotoxicity of the microparticles formulated with both polymers was evaluated (0.5–20 mg/mL) on Caco-2 cells, showing high cytocompatibility. These results underline the suitability of the synthesized materials for the successful delivery of probiotic formulations to the target organ, highlighting for the first time the potential use of Eudraguard biotic as an effective enteric coating for the targeted delivery of probiotics. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

Back to TopTop