Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Energy Return Ratios (ERRs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1705 KiB  
Article
Environmental Benefits of Air Emission Reduction in the Waste Tire Management Practice
by Jasmina Ćetković, Slobodan Lakić, Miloš Žarković, Radoje Vujadinović, Miloš Knežević, Angelina Živković and Jelena Cvijović
Processes 2022, 10(4), 787; https://doi.org/10.3390/pr10040787 - 17 Apr 2022
Cited by 14 | Viewed by 5063
Abstract
Montenegro faces serious challenges in terms of waste tire management. The main goal of our paper is to consider the financial and economic justification of the implementation of the first phase of the project of collection, takeover and transport, sorting, and storage of [...] Read more.
Montenegro faces serious challenges in terms of waste tire management. The main goal of our paper is to consider the financial and economic justification of the implementation of the first phase of the project of collection, takeover and transport, sorting, and storage of waste tires from the three municipalities in Montenegro. The financial feasibility analysis pointed out the need to organize the second phase of the project and the production of commercially usable and energy efficient products. That phase would lead to the desired commercial effects and will probably ensure the financial sustainability of the project. The economic feasibility analysis of the project included an assessment of the socio-economic benefits from the emission reduction of the first group of pollutants (PM, SOX, NOX, VOC, CO) as a consequence of the waste tires’ destruction, predominantly by combusting them. Unit values of pollution costs by types of gases, adjusted for Montenegro, were defined in the interval from 192 EUR/t for CO to 24,294 EUR/t for PM. We proved that the direct socio-economic benefits of this project are savings in the cost of environmental pollution. The total present value of discounted costs in the observed time period was calculated at the level of EUR 1,620,080, while the total present value of the positive socio-economic effects was estimated at EUR 1,991,180. Dynamic justification indicators suggest that this investment has a satisfactory socio-economic justification, i.e., the economic rate of return is higher than the opportunity cost of capital (ERR = 15.82%), the economic net present value is greater than 0 (ENPV = 371,100 EUR), and the benefit–cost ratio is greater than 1 (B/C ratio = 1.23). Full article
Show Figures

Figure 1

17 pages, 2518 KiB  
Review
Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers
by Roberto Leonardo Rana, Mariarosaria Lombardi, Pasquale Giungato and Caterina Tricase
Adm. Sci. 2020, 10(2), 21; https://doi.org/10.3390/admsci10020021 - 29 Mar 2020
Cited by 33 | Viewed by 7104
Abstract
The scarcity of fossil fuels and their environmental impact as greenhouse gas (GHG) emissions, have prompted governments around the world to both develop research and foster the use of renewable energy sources (RES), such as biomass, wind, and solar. Therefore, although these efforts [...] Read more.
The scarcity of fossil fuels and their environmental impact as greenhouse gas (GHG) emissions, have prompted governments around the world to both develop research and foster the use of renewable energy sources (RES), such as biomass, wind, and solar. Therefore, although these efforts represent potential solutions for fossil fuel shortages and GHG emission reduction, some doubts have emerged recently regarding their energy efficiency. Indeed, it is very useful to assess their energy gain, which means quantifying and comparing the amount of energy consumed to produce alternative fuels. In this context, the aim of this paper is to analyze the trend of the academic literature of studies concerning the indices of the energy return ratio (ERR), such as energy return on energy invested (EROEI), considering biomass, wind and solar energy. This could be useful for institutions and to public organizations in order to redefine their political vision for realizing sustainable socio-economic systems in line with the transition from fossil fuels to renewable energies. Results showed that biomass seems to be more expensive and less efficient than the equivalent fossil-based energy, whereas solar photovoltaic (PV) and wind energy have reached mature and advanced levels of technology. Full article
Show Figures

Figure 1

13 pages, 1766 KiB  
Article
Evaluation of Fast Charging Efficiency under Extreme Temperatures
by Germana Trentadue, Alexandre Lucas, Marcos Otura, Konstantinos Pliakostathis, Marco Zanni and Harald Scholz
Energies 2018, 11(8), 1937; https://doi.org/10.3390/en11081937 - 25 Jul 2018
Cited by 43 | Viewed by 7804
Abstract
Multi-type fast charging stations are being deployed over Europe as electric vehicle adoption becomes more popular. The growth of an electrical charging infrastructure in different countries poses different challenges related to its installation. One of these challenges is related to weather conditions that [...] Read more.
Multi-type fast charging stations are being deployed over Europe as electric vehicle adoption becomes more popular. The growth of an electrical charging infrastructure in different countries poses different challenges related to its installation. One of these challenges is related to weather conditions that are extremely heterogeneous due to different latitudes, in which fast charging stations are located and whose impact on the charging performance is often neglected or unknown. The present study focused on the evaluation of the electric vehicle (EV) charging process with fast charging devices (up to 50 kW) at ambient (25 °C) and at extreme temperatures (−25 °C, −15 °C, +40 °C). A sample of seven fast chargers and two electric vehicles (CCS (combined charging system) and CHAdeMO (CHArge de Move)) available on the commercial market was considered in the study. Three phase voltages and currents at the wall socket, where the charger was connected, as well as voltage and current at the plug connection between the charger and vehicle have been recorded. According to SAE (Society of Automotive Engineers) J2894/1, the power conversion efficiency during the charging process has been calculated as the ratio between the instantaneous DC power delivered to the vehicle and the instantaneous AC power supplied from the grid in order to test the performance of the charger. The inverse of the efficiency of the charging process, i.e., a kind of energy return ratio (ERR), has been calculated as the ratio between the AC energy supplied by the grid to the electric vehicle supply equipment (EVSE) and the energy delivered to the vehicle’s battery. The evaluation has shown a varied scenario, confirming the efficiency values declared by the manufacturers at ambient temperature and reporting lower energy efficiencies at extreme temperatures, due to lower requested and, thus, delivered power levels. The lowest and highest power conversion efficiencies of 39% and 93% were observed at −25 °C and ambient temperature (+25 °C), respectively. Full article
Show Figures

Figure 1

15 pages, 980 KiB  
Article
Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework
by David J. Murphy, Michael Carbajales-Dale and Devin Moeller
Energies 2016, 9(11), 917; https://doi.org/10.3390/en9110917 - 5 Nov 2016
Cited by 41 | Viewed by 7939
Abstract
How do we know which energy technologies or resources are worth pursuing and which aren’t? One way to answer that question is to compare the energy return of a certain technology—i.e., how much energy is remaining after accounting for the amount of energy [...] Read more.
How do we know which energy technologies or resources are worth pursuing and which aren’t? One way to answer that question is to compare the energy return of a certain technology—i.e., how much energy is remaining after accounting for the amount of energy expended in the production and delivery process. Such energy return ratios (the most famous of which is energy return on investment (EROI)) fall within the field of net energy analysis (NEA), and provide an easy way to determine which technology is “better”; i.e., higher Energy Return Ratios (ERRs) are, certeris paribus, better than lower ERRs. Although useful as a broad measure of energy profitability, comparisons can also be misleading, particularly if the units being compared are different. For example, the energy content of electricity produced from a photovoltaic cell is different than the energy content of coal at the mine-mouth, yet these are often compared directly within the literature. These types of inconsistencies are common within the NEA literature. In this paper, we offer life cycle assessment (LCA) and the LCA methodology as a possible solution to the persistent methodological issues within the NEA community, and urge all NEA practitioners to adopt this methodology in the future. Full article
(This article belongs to the Special Issue Life-Cycle Assessment of Energy Systems in Current and Evolving Grids)
Show Figures

Figure 1

26 pages, 1749 KiB  
Article
Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective
by Carey W. King, John P. Maxwell and Alyssa Donovan
Energies 2015, 8(11), 12949-12974; https://doi.org/10.3390/en81112346 - 17 Nov 2015
Cited by 30 | Viewed by 8850
Abstract
We translate between biophysical and economic metrics that characterize the role of energy in the economy. Specifically, using data from the International Energy Agency, we estimate the energy intensity ratio (EIR), a price-based proxy for a power return ratio (PRR ∼ P out [...] Read more.
We translate between biophysical and economic metrics that characterize the role of energy in the economy. Specifically, using data from the International Energy Agency, we estimate the energy intensity ratio (EIR), a price-based proxy for a power return ratio (PRR ∼ P out / P invested ). The EIR is a useful metric, because for most countries and energy commodities, it can indicate the biophysical trends of net energy when data are too scarce to perform an original net energy analysis. We calculate EIR for natural gas, coal, petroleum and electricity for forty-four countries from 1978 to 2010. Global EIR values generally rise from 1978 to 1998, decline from 1998 to 2008 and then slightly rebound. These trends indicate one interpretation of the net energy of the world economy. To add perspective to our recent, but short, time series, we perform the same calculations for historical England and United Kingdom energy prices to demonstrate that a given energy price translates to different PRRs (EIR in this case) depending on the structure of the economy and technology. We review the formulation of PRRs and energy return ratios (ERR ∼ E out / E invested ) to indicate why PRRs translate to (the inverse of) energy prices and ERRs translate to (the inverse of) energy costs. We show why for any given value of an ERR or PRR, there is not a single corresponding energy cost or price, and vice versa. These principles in turn provide the basis to perform better modeling of future energy scenarios (e.g., low-carbon transition) by considering the relationship between economic metrics (cost and price) and biophysical metrics (energy and power return ratios) based on energy, material and power flows. Full article
(This article belongs to the Special Issue Economics of Bioenergy 2015)
Show Figures

Figure 1

35 pages, 508 KiB  
Article
A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios
by Adam R. Brandt and Michael Dale
Energies 2011, 4(8), 1211-1245; https://doi.org/10.3390/en4081211 - 19 Aug 2011
Cited by 60 | Viewed by 14684
Abstract
The efficiencies of energy extraction and conversion systems are typically expressed using energy return ratios (ERRs) such as the net energy ratio (NER) or energy return on investment (EROI). A lack of a general mathematical framework prevents inter-comparison of NER/EROI estimates between authors: [...] Read more.
The efficiencies of energy extraction and conversion systems are typically expressed using energy return ratios (ERRs) such as the net energy ratio (NER) or energy return on investment (EROI). A lack of a general mathematical framework prevents inter-comparison of NER/EROI estimates between authors: methods used are not standardized, nor is there a framework for succinctly reporting results in a consistent fashion. In this paper we derive normalized mathematical forms of four ERRs for energy extraction and conversion pathways. A bottom-up (process model) formulation is developed for an n-stage energy harvesting and conversion pathway with various system boundaries. Formations with the broadest system boundaries use insights from life cycle analysis to suggest a hybrid process model/economic input output based framework. These models include indirect energy consumption due to external energy inputs and embodied energy in materials. Illustrative example results are given for simple energy extraction and conversion pathways. Lastly, we discuss the limitations of this approach and the intersection of this methodology with “top-down” economic approaches. Full article
Show Figures

Figure 1

Back to TopTop