Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers
Abstract
:1. Introduction
2. Energy Return Ratio and Relative Indices
3. Literature Review
4. Methodology
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References and Notes
- Al-Waeli, Ali HA, Kamaruzzaman Sopian, Hussein A. Kazem, and Miqdam T. Chaichan. 2017. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renewable and Sustainable Energy Reviews 77: 109–30. [Google Scholar] [CrossRef]
- Amouri, Mohammed, Faroudja Mohellebi, Toudert Ahmed Zaïd, and Majda Aziza. 2017. Sustainability Assessment of Ricinus Communis Biodiesel Using LCA Approach. Clean Technologies and Environmental Policy 19: 749–60. [Google Scholar] [CrossRef]
- Arodudu, Oludunsin, Katharina Helming, Hubert Wiggering, and Alexey Voinov. 2017a. Towards a More Holistic Sustainability Assessment Framework for Agro-Bioenergy Systems—A Review. Environmental Impact Assessment Review 62: 61–75. [Google Scholar] [CrossRef]
- Arodudu, Oludunsin, Katharina Helming, Hubert Wiggering, and Alexey Voinov. 2017b. Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis. Energies 10: 29. [Google Scholar] [CrossRef] [Green Version]
- Barbera, Elena, Eleonora Sforza, Vincenzo Musolino, Sandeep Kumar, and Alberto Bertucco. 2018. Nutrient recycling in large-scale microalgal production: Mass and energy analysis of two recovery strategies by process simulation. Chemical Engineering Research and Design 132: 785–94. [Google Scholar] [CrossRef]
- Beal, Colin M., Robert E. Hebner, Michael E. Webber, Rodney S. Ruoff, and A. Frank Seibert. 2012. The energy return on investment for algal biocrude: Results for a research production facility. BioEnergy Research 5: 341–62. [Google Scholar] [CrossRef]
- Bhandari, Khagendra P., Jennifer M. Collier, Randy J. Ellingson, and Defne S. Apul. 2015. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews 47: 133–14. [Google Scholar] [CrossRef]
- Brandenberger, Martin, J. Matzenberger, Franz Vogel, and Ch Ludwig. 2013. Producing synthetic natural gas from microalgae via supercritical water gasification: A techno-economic sensitivity analysis. Biomass and Bioenergy 51: 26–34. [Google Scholar] [CrossRef] [Green Version]
- Brandt, Adam R., and Michael Dale. 2011. A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios. Energies 4: 1211–45. [Google Scholar] [CrossRef] [Green Version]
- British Petroleum (BP). 2019. BP Statistical Review of World Energy, 68th edition. June 2019. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed on 5 March 2019).
- Brockway, Paul E., Anne Owen, Lina I. Brand-Correa, and Lukas Hardt. 2019. Estimation of global final stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nature Energy 4: 612. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, Elvira, Laura Vanoli, Alberto Carotenuto, and Sergio Ulgiati. 2015. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy 86: 476–87. [Google Scholar] [CrossRef]
- Capellán-Pérez, Iñigo, Carlos de Castro, and Luis Javier Miguel González. 2019. Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Reviews 26: 100399. [Google Scholar] [CrossRef]
- Carneiro, Maria Luisa N. M., Florian Pradelle, Sergio L. Braga, Marcos Sebastião P. Gomes, Ana Rosa FA Martins, Franck Turkovics, and Renata NC Pradelle. 2017. Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renewable and Sustainable Energy Reviews 73: 632–53. [Google Scholar] [CrossRef]
- Chapman, Andrew, Benjamin McLellan, and Tetsuo Tezuka. 2016. Strengthening the Energy Policy Making Process and Sustainability Outcomes in the OECD through Policy Design. 2016. Strengthening the Energy Policy Making Process and Sustainability Outcomes in the OECD through Policy Design. Administrative Sciences 6: 9. [Google Scholar] [CrossRef] [Green Version]
- Clack, Christopher T. M., Staffan A. Qvist, Jay Apt, Morgan Bazilian, Adam R. Brandt, Ken Caldeira, Steven J. Davis, Victor Diakov, Mark A. Handschy, Paul D. H. Hines, and et al. 2017. Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proceedings of the National Academy of Sciences of the United States of America 114: 6722–27. [Google Scholar] [CrossRef] [Green Version]
- De Castro, Carlos, and Iñigo Capellán-Pérez. 2018. Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies. BioPhysical Economics and Resource Quality 3: 14. [Google Scholar] [CrossRef]
- De Castro, Carlos, Óscar Carpintero, Fernando Frechoso, Margarita Mediavilla, and Luis J. de Miguel. 2014. A top-down approach to assess physical and ecological limits of biofuels. Energy 64: 506–12. [Google Scholar] [CrossRef]
- Dias De Oliveira, Marcelo E., Burton E. Vaughan, and Edward J. Rykiel. 2005. Ethanol as fuel: energy, carbon dioxide balances and ecological footprint. Bioscience 55: 593–602. [Google Scholar] [CrossRef]
- Dong, Xiaobin, Sergio Ulgiati, Maochao Yan, Xinshi Zhang, and Wangsheng Gao. 2008. Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China. Energy Policy 36: 3882–92. [Google Scholar] [CrossRef]
- Dupont, Elise, Rembrandt Koppelaar, and Hervé Jeanmart. 2018. Global available wind energy with physical and energy return on investment constraints. Applied Energy 209: 322–38. [Google Scholar] [CrossRef]
- Dupont, Elise, and Hervé Jeanmart. 2019. Global Potential of Wind and Solar Energy with Physical and Energy Return on Investment (EROI) Constraints; Application at the European Level (EU 28 Countries). Paper presented at the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, Poland, June 23–28. [Google Scholar]
- Evans, D. G. 1982. Energy Analysis as an Aid to Public Decision Making. In Institution of Chemical Engineers Symposium Series, Energy: Money, Materials and Engineering. Pergamon: Elsevier, pp. T1-23–T1-36. [Google Scholar]
- Fabre, Adrien. 2019. Evolution of EROIs of electricity until 2050: Estimation and implications on Prices. Ecological Economics 164: 106351. [Google Scholar] [CrossRef]
- Fagnart, Jean-François, and Marc Germain. 2016. Net energy ratio, EROEI and the macroeconomy. Structural Change and Economic Dynamics 37: 121–6. [Google Scholar] [CrossRef]
- Fagnart, Jean-François, Marc Germain, and Benjamin Peeters. 2020. Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI. Sustainability 12: 1176. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, Ferruccio, and Robert J. Hopkirk. 2016. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energy Policy 94: 336–44. [Google Scholar] [CrossRef] [Green Version]
- Firrisa, Melese Tesfaye, Iris van Duren, and Alexey Voinov. 2014. Energy efficiency for rapeseed biodiesel production in different farming systems. Energy Efficiency 7: 79–95. [Google Scholar] [CrossRef]
- Goel, Sonali, Bibekananda Jena, and Renu Sharma. 2020. Life Cycle Energy Analysis of a 3.4 kWp Stand-Alone Rooftop Solar Photovoltaic System in Eastern India. Lecture Notes in Civil Engineering 36: 175–83. [Google Scholar]
- Gómez-Camacho, Carlos E., and Bernardo Ruggeri. 2019. Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H2 Production. Sustainability 11: 4911. [Google Scholar] [CrossRef] [Green Version]
- Good, Clara. 2016. Environmental impact assessments of hybrid photovoltaic-thermal (PV/T) systems—A Review. Renewable and Sustainable Energy Reviews 55: 234–39. [Google Scholar] [CrossRef]
- Hall, Charles A. S. 2017. Will EROI be the primary determinant of our economic future? The view of the natural scientist versus the economist. Joule 1: 635–38. [Google Scholar] [CrossRef] [Green Version]
- Hall, Charles A. S., and K. A. Klitgaard. 2012. Energy and the Wealth of Nations: Understanding the Biophysical Economy. New York: Springer. [Google Scholar]
- Hall, Charles A. S., Jessica G. Lambert, and Stephen B. Balogh. 2014. EROI of different fuels and the implications for society. Energy Policy 64: 141–52. [Google Scholar] [CrossRef] [Green Version]
- Hanif, M., T. M. I. Mahlia, H. B. Aditiya, and Abu Bakar. 2017. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia. Biofuel Research Journal-BRJ 4: 537–44. [Google Scholar] [CrossRef] [Green Version]
- Heinberg, Richard, and Jerry Mander. 2009. Searching for A Miracle: Net Energy Limits & the Fate of Industrial Society, 4th ed. Washington: Post Carbon Institute Publisher. [Google Scholar]
- Heller, Martin C., Gregory A. Keoleian, Margaret K. Mann, and Timothy A. Volk. 2008. Life cycle energy and environmental benefits of generating electricity from willow biomass. Renewable Energy 29: 1023–42. [Google Scholar] [CrossRef]
- Hernandez, Patxi, and Paul Kenny. 2012. Net energy analysis of domestic solar water heating installations in operation. Renewable and Sustainable Energy Reviews 16: 170–77. [Google Scholar] [CrossRef]
- Huang, Yu-Fong, Xing-Jia Gan, and Pei-Te Chiueh. 2017. Life cycle assessment and net energy analysis of offshore wind power systems. Renewable Energy 102: 98–106. [Google Scholar] [CrossRef]
- Imasiku, Katundu, Valerie Thomas, and Etienne Ntagwirumugara. 2019. Unraveling Green Information Technology Systems as a Global Greenhouse Gas Emission Game-Changer. Administrative Sciences 9: 43. [Google Scholar] [CrossRef] [Green Version]
- ISO (International Organization for Standardization). 2006a. Environmental management—Life cycle assessment—Principles and framework ISO 14040. [Google Scholar]
- ISO (International Organization for Standardization). 2006b. Environmental management—Life cycle assessment—Requirements and guidelines ISO 14044. [Google Scholar]
- Ketzer, Franziska, Johannes Skarka, and Christine Rösch. 2018. Critical Review of Microalgae LCA Studies for Bioenergy Production. BioEnergy Research 11: 95–105. [Google Scholar] [CrossRef]
- Klikocka, Hanna, Armand Kasztelan, Aneta Zakrzewska, Teresa Wyłupek, Bogdan Szostak, and Barbara Skwaryło-Bednarz. 2019. The Energy Efficiency of the Production and Conversion of Spring Triticale Grain into Bioethanol. Agronomy 9: 423. [Google Scholar] [CrossRef] [Green Version]
- Kolarikova, M., Tatiana Ivanova, Bohumil Havrland, and K. Amonov. 2014. Evaluation of sustainability aspect—Energy balance of briquettes made of hemp biomass cultivated in Moldova. Agronomy Research 12: 519–26. [Google Scholar]
- Koppelaar, Rembrandt H. E. M. 2017. Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization. Renewable and Sustainable Energy Reviews 72: 1241–55. [Google Scholar] [CrossRef]
- Kubiszewski, Ida, Cutler J. Cleveland, and Peter K. Endres. 2010. Meta-analysis of net energy return for wind power systems. Renewable Energy 35: 218–25. [Google Scholar] [CrossRef]
- Lenzen, Manfred, and Jesper Munksgaard. 2002. Energy and CO2 life-cycle analyses of wind turbines—Review and applications. Renewable Energy 26: 339–62. [Google Scholar] [CrossRef]
- Liao, Mei, Chao Ma, Dongpu Yao, and Huizheng Liu. 2015. Decomposition of embodied exergy flows in manufactured products and implications for carbon tariff policies. Asia Europe Journal 11: 265–83. [Google Scholar] [CrossRef] [Green Version]
- Liu, Feng, and Jeroen C. J. M. Van den Bergh. 2020. Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA. Energy Policy 138: 111234. [Google Scholar] [CrossRef]
- Lyu, Xiaohuan, and Anna Shi. 2018. Research on the Renewable Energy Industry Financing Efficiency Assessment and Mode Selection. Sustainability 10: 222. [Google Scholar] [CrossRef] [Green Version]
- Macedo, Isaias C., Joaquim E. A. Seabra, and João E. A. R. Silva. 2008. Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32: 582–95. [Google Scholar] [CrossRef]
- Manouchehrinejad, Maryam, Kamalakanta Sahoo, Nalladurai Kaliyan, Hari Singh, and Sudhagar Mani. 2020. Economic and environmental impact assessments of a stand-alone napier grass-fired combined heat and power generation system in the southeastern US. International Journal of Life Cycle Assessment 25: 89–104. [Google Scholar] [CrossRef]
- Meyer, Ane Katharina Paarup, Ehiazesebhor Augustine Ehimen, and Jens Bo Holm-Nielsen. 2014. Bioenergy production from roadside grass: A case study of the feasibility of using roadside grass for biogas production in Denmark. Resources, Conservation and Recycling 93: 124–33. [Google Scholar] [CrossRef] [Green Version]
- Meyer, Ane Katharina Paarup, Chitra Sangaraju Raju, S. Kucheryavskiy, and Jens Bo Holm-Nielsen. 2015. The energy balance of utilising meadow grass in Danish biogas production. Resources, Conservation and Recycling 104: 265–75. [Google Scholar] [CrossRef]
- Milazzo, Maria Francesca, F. Spina, Alessandro Vinci, Claudia Espro, and J. C. J. Bart. 2013. Brassica biodiesels: Past, present and future. Renewable and Sustainable Energy Reviews 18: 350–89. [Google Scholar] [CrossRef]
- Moriarty, Patrick, and Damon Honnery. 2019. Ecosystem maintenance energy and the need for a green EROI. Energy Policy 131: 229–23. [Google Scholar] [CrossRef]
- Murphy, David J., and Charles A. S. Hall. 2010. Year in review—EROI or energy return on (energy) invested. Annals of New York Academy of Sciences 1185: 102–18. [Google Scholar] [CrossRef] [PubMed]
- Murphy, David J., Charles A. S. Hall, and Bobby Powers. 2011. New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environment, Development and Sustainability. 13: 179–202. [Google Scholar] [CrossRef]
- Murphy, David J., Michael Carbajales-Dale, and Devin Moeller. 2016. Comparing apples to apples: why the net energy analysis community needs to adopt the life-cycle analysis framework. Energies 9: 917. [Google Scholar] [CrossRef]
- Ng, Poh Khai, and Nalanie Mithraratne. 2014. Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics. Renewable and Sustainable Energy Reviews 31: 736–45. [Google Scholar] [CrossRef]
- Palmer, Graham, and Joshua Floyd. 2017. An Exploration of Divergence in EPBT and EROI for Solar Photovoltaics. BioPhysical Economics and Resource Quality 2: 15. [Google Scholar] [CrossRef] [Green Version]
- Perez, M. J. R., H.-C. Kim, V. M. Fthenakis, and A. O. Pereira. 2011. The Environmental Life-Cycle Value Proposition. Paper presented at 40th ASES National Solar Conference, Raleigh, NC, USA, May 17; pp. 941–48. [Google Scholar]
- Piastrellini, Roxana, Alejandro Pablo Arena, and Bárbara Civit. 2017. Energy life-cycle analysis of soybean biodiesel: Effects of tillage and water management. Energy 126: 13–20. [Google Scholar] [CrossRef]
- Pickard, William F. 2017. A simple lower bound on the EROI of photovoltaic electricity generation. Energy Policy 107: 488–90. [Google Scholar] [CrossRef]
- Pleanjai, Somporn, and Shabbir H. Gheewala. 2009. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 86: S209–S214. [Google Scholar] [CrossRef]
- Pradhan, Anup, Dev S. Shrestha, Jon Van Gerpen, and James Duffield. 2008. The energy balance of soybean oil biodiesel production: A review of past studies. Transactions of the Asabe 51: 185–94. [Google Scholar] [CrossRef]
- Preston, T. R., and Lylian Rodríguez. 2009. Energy returned on energy invested (EROEI); the case for gasification as a component of an integrated livestock-based farming system. Livestock Research for Rural Development 21: 195. [Google Scholar]
- Price, Lindsay, and Alissa Kendall. 2012. Wind power as a case study: Improving life cycle assessment reporting to better enable meta-analyses. Journal of Industrial Ecology 16: S22–S27. [Google Scholar] [CrossRef]
- Rahimi, Vajiheh, Keikhosro Karimi, Marzieh Shafiei, Reza Naghavi, Benyamin Khoshnevisan, Hossein Ghanavati, Seyed Saeid Mohtasebi, Shahin Rafiee, and Meisam Tabatabaei. 2018. Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery. Renewable Energy 117: 135–49. [Google Scholar] [CrossRef]
- Rana, Roberto Leonardo, Mariarosaria Lombardi, and Caterina Tricase. 2013. Environmental aspects of bioenergy from microalgae. Paper presented at 21st European Biomass Conference & Exhibition: Setting the Course for a Biobased Economy, Copenhagen, Denmark, June 3–7; pp. 203–10. [Google Scholar]
- Raugei, Marco, Michael Carbajales-Dale, Charles J. Barnhart, and Vasilis Fthenakis. 2015. “Rebuttal:” Comments on ‘Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants’—Making clear of quite some confusion. Energy 82: 1088–91. [Google Scholar] [CrossRef]
- Raugei, Marco, Sgouris Sgouridis, David Murphy, Vasilis Fthenakis, Rolf Frischknecht, Christian Breyer, and Ugo Bardi. 2017. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy 102: 377–84. [Google Scholar] [CrossRef]
- Restuccia, A., S. Failla, D. Longo, L. Caruso, I. Mallia, and G. Schillaci. 2013. Assessment of energy return on energy investment (EROEI) of oil bearing crops for renewable fuel production. Journal of Agricultural Engineering 44: 539–45. [Google Scholar] [CrossRef]
- Ribeiro, Jorge Miguel Carneiro, Radu Godina, João Carlos de Oliveira Matias, and Leonel Jorge Ribeiro Nunes. 2018. Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability 10: 2323. [Google Scholar] [CrossRef] [Green Version]
- Rocha, Mateus Henrique, Rafael Silva Capaz, Electo Eduardo Silva Lora, Luiz Augusto Horta Nogueira, Marcio Montagnana Vicente Leme, Maria Luiza Grillo Renó, and Oscar Almazán del Olmo. 2014. Life cycle assessment (LCA) for biofuels in Brazilian conditions: A meta-analysis. Renewable and Sustainable Energy Reviews 37: 435–59. [Google Scholar] [CrossRef]
- Roles, John, Jennifer Yarnold, Juliane Wolf, Evan Stephens, Karen Hussey, and Ben Hankamer. 2020. Charting a Development Path to Deliver Cost Competitive Microalgae-Based Fuels. Algal Research 45: 101721. [Google Scholar] [CrossRef]
- Rye, Craig D., and Tim Jackson. 2018. A review of EROEI-dynamics energy-transition models. Energy Policy 122: 260–72. [Google Scholar] [CrossRef]
- Spath, Pamela L., and Margaret K. Mann. 2000. Life Cycle Assessment of A Natural Gas Combined-Cycle Power Generation System; NREL/TP-570-27715. Golden: National Renewable Energy Laboratory. Available online: https://www.nrel.gov/docs/fy00osti/27715.pdf (accessed on 14 December 2019).
- Tareen, Wajahat Ullah Khan, Zuha Anjum, Nabila Yasin, Leenah Siddiqui, Ifzana Farhat, Suheel Abdullah Malik, Saad Mekhilef, Mehdi Seyedmahmoudian, Ben Horan, Mohamed Darwish, and et al. 2018. The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel. Energies 11: 2431. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, Ville, Maija Leino, H. Kasurinen, and Lassi Linnanen. 2017. Transportation biofuel efficiencies from cultivated feedstock in the boreal climate zone: Case Finland. Biomass and Bioenergy 99: 79–89. [Google Scholar] [CrossRef]
- Van Duren, Iris, Alexey Voinov, Oludunsin Arodudu, and Melese Tesfaye Firrisa. 2015. Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renewable Energy 74: 49–59. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, Timothy G., Michael R. W. Walmsley, and Martin J. Atkins. 2017. Energy Return on energy and carbon investment of wind energy farms: A case study of New Zealand. Journal of Cleaner Production 167: 885–95. [Google Scholar] [CrossRef]
- Walmsley, Timothy G., Michael R. W. Walmsley, Petar S. Varbanov, and Jiří J. Klemeš. 2018. Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review. Renewable and Sustainable Energy Reviews 98: 328–45. [Google Scholar] [CrossRef]
- Wang, Yu, and Ming-Hsun Cheng. 2018. Greenhouse gas emissions embedded in US-China fuel ethanol trade: A comparative well-to-wheel estimate. Journal of Cleaner Production 183: 653–61. [Google Scholar] [CrossRef]
- Weißbach, Daniel, G. Ruprecht, A. Huke, K. Czerski, S. Gottlieb, and A. Hussein. 2013. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52: 210–21. [Google Scholar] [CrossRef]
- Yeo, Joonho, Shauhrat S. Chopra, Lin Zhang, and Alicia Kyoungjin An. 2019. Life Cycle Assessment (LCA) of Food Waste Treatment in Hong Kong: On-Site Fermentation Methodology. Journal of Environmental Management 240: 343–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Li Xiao, Ming Yue Pang, Ji Han, Yuyou Li, and Chang Bo Wang. 2019. Geothermal power in China: Development and performance evaluation. Renewable and Sustainable Energy Reviews 116: 1–8. [Google Scholar] [CrossRef]
- Zhou, Zikai, and Michael Carbajales-Dale. 2018. Assessing the photovoltaic technology landscape: efficiency and energy return on investment (EROI). Energy Environmental Science 11: 603. [Google Scholar] [CrossRef] [Green Version]
- Zupko, Robert. 2019. Life Cycle Assessment of the Production of Gasoline and Diesel from Forest Residues using Integrated Hydropyrolysis and Hydroconversion. International Journal of Life Cycle Assessment 24: 1793–804. [Google Scholar] [CrossRef]
RES | Typology | Values | Reference |
---|---|---|---|
WIND | Inshore | 34–58 | (Kubiszewski et al. 2010; Walmsley et al. 2017; Huang et al. 2017; Dupont et al. 2018) |
Offshore | 16.7–17.7 | ||
SOLAR | Photovoltaic | 5–34 | (Poh Khai and Mithraratne 2014; Bhandari et al. 2015; Pickard 2017; Raugei et al. 2017; Zhou and Carbajales-Dale 2018; Liu and Van den Bergh 2020; Goel et al. 2020) |
BIOMASS | Sugarcane and stems gasification + organic waste | 8 | (Preston and Rodríguez 2009) |
Bio-crude from algae | <1 | (Beal et al. 2012) | |
Synthetic natural gas (SNG) from microalgae | 0.08–1.84 | (Brandenberger et al. 2013 ) | |
Biodiesel from Linum usitatissimum, Camelina sativa and Brassica | >1 | (Restuccia et al. 2013) | |
Biogas from roadside vegetation | 2.17–2.88 | (Meyer et al. 2014) | |
Heat from industrial hemp | 12.6 | (Kolarikova et al. 2014) | |
Biodiesel from rapeseed | 1.73–2.60 | (Firrisa et al. 2014) | |
Biodiesel from rapeseed | <2.2 | (Van Duren et al. 2015) | |
Biogas from grass | 1.7–3.3 | (Meyer et al. 2015) | |
Biodiesel from rapeseed | 1.1 | (Uusitalo et al. 2017) | |
Grass methane | 2.5 | ||
Ethanol from barley | 0.9 | ||
Ethanol from oat | 0.9 | ||
Ethanol from wheat | 0.9 | ||
Synthetic natural gas from wood | 2.9 | ||
Synthetic natural gas from willow | 2.9 | ||
Ethanol from straw | 2.0 | ||
Ethanol from corn (low intensity agriculture) | 5.4–5.9 | (Arodudu et al. 2017b) | |
Biogas from corn (low intensity agriculture) | 14.7–22.4 | ||
Ethanol from corn (high intensity agriculture) | 1.2–1.7 | ||
Biogas from corn (high intensity agriculture) | 2.2–10.2 | ||
Biodiesel from Ricinus communis | 2.60 | (Amouri et al. 2017) | |
Ethanol from corn | 1.01–1.07 | (Murphy et al. 2016) | |
Ethanol from corn | 0.67 | (Wang and Cheng 2018) | |
Ethanol from cassava | 1.15 | ||
Ethanol from sweet sorghum | 0.48 | ||
Ethanol from corn stover | 1.26–1.56 | ||
Ethanol from corncob | 1.25–1.42 | ||
Biogas from microalgae | 2.3–5 | (Barbera et al. 2018) | |
Lipid-rich solid fraction | 0.8–2.4 | ||
Renewable fuel from woody biomass residue, such as: Gasoline Diesel | 4.19 4.31 | (Zupko 2019) | |
Biofuel from food waste | 2 | (Yeo et al. 2019) | |
Energy and heat from food waste | 2 | ||
Biogas from food waste | 6 | ||
Energy, heat and biogas from food waste | 8 | ||
Combined production of heat and power from Napier grass | 5.0 | (Manouchehrinejad et al. 2020) | |
Bioethanol from different spring triticale cultivation systems | Average value 1.114 | (Klikocka et al. 2019) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, R.L.; Lombardi, M.; Giungato, P.; Tricase, C. Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers. Adm. Sci. 2020, 10, 21. https://doi.org/10.3390/admsci10020021
Rana RL, Lombardi M, Giungato P, Tricase C. Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers. Administrative Sciences. 2020; 10(2):21. https://doi.org/10.3390/admsci10020021
Chicago/Turabian StyleRana, Roberto Leonardo, Mariarosaria Lombardi, Pasquale Giungato, and Caterina Tricase. 2020. "Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers" Administrative Sciences 10, no. 2: 21. https://doi.org/10.3390/admsci10020021
APA StyleRana, R. L., Lombardi, M., Giungato, P., & Tricase, C. (2020). Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers. Administrative Sciences, 10(2), 21. https://doi.org/10.3390/admsci10020021