Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Ectropis grisescens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4247 KiB  
Article
Field-Based Spectral and Metabolomic Analysis of Tea Geometrid (Ectropis grisescens) Feeding Stress
by Xuelun Luo, Wenkai Zhang, Zhenxiong Huang, Yong He, Jin Zhang and Xiaoli Li
Agriculture 2025, 15(13), 1349; https://doi.org/10.3390/agriculture15131349 - 24 Jun 2025
Viewed by 354
Abstract
Tea is one of the most widely consumed non-alcoholic beverages globally, yet its yield and quality are significantly impacted by herbivory from tea geometrids. To accurately detect herbivory stress in tea leaves, this study integrated metabolomics with visible-near-infrared spectroscopy (VIS-NIRS) to explore its [...] Read more.
Tea is one of the most widely consumed non-alcoholic beverages globally, yet its yield and quality are significantly impacted by herbivory from tea geometrids. To accurately detect herbivory stress in tea leaves, this study integrated metabolomics with visible-near-infrared spectroscopy (VIS-NIRS) to explore its in situ capabilities and underlying mechanisms. The results demonstrated that metabolomic data, combined with PCA-based linear dimensionality reduction, could effectively distinguish between tea leaves subjected to herbivory by different densities of tea geometrids. VIS-NIRS successfully identified herbivore-damaged leaves, achieving an optimal average classification accuracy of 0.857. Furthermore, VIS-NIRS was able to differentiate leaves subjected to herbivory on different days. The application of appropriate preprocessing techniques significantly enhanced temporal classification, achieving the highest average classification accuracy of 0.773. By integrating metabolomics and spectral band analysis, the spectral range of 800–2500 nm was found to more accurately identify leaves exposed to herbivory for a prolonged period. Compared to using the full spectrum, the model built within this wavelength range improved classification accuracy by 10%. In conclusion, this study provides a solid theoretical foundation for the in situ, rapid detection of tea geometrid herbivory stress in the field using VIS-NIRS, offering key technical support for future applications. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Graphical abstract

18 pages, 3421 KiB  
Article
Molecular Characterization and Functional Analysis of Odorant-Binding Proteins in Ectropis grisescens
by Fangmei Zhang, Haohan Sun, Shubao Geng, Shibao Guo, Zhou Zhou, Hongzhong Shi, Xuguo Zhou and Xiangrui Li
Int. J. Mol. Sci. 2025, 26(10), 4568; https://doi.org/10.3390/ijms26104568 - 10 May 2025
Viewed by 499
Abstract
Insect odorant-binding proteins (OBPs) are promising molecular targets for developing novel pest management strategies by modulating chemoreception-driven behaviors. The tea gray geometrid Ectropis grisescens (Lepidoptera, Geometridae) is a major pest in tea plantations, causing substantial economic losses in China. In this study, we [...] Read more.
Insect odorant-binding proteins (OBPs) are promising molecular targets for developing novel pest management strategies by modulating chemoreception-driven behaviors. The tea gray geometrid Ectropis grisescens (Lepidoptera, Geometridae) is a major pest in tea plantations, causing substantial economic losses in China. In this study, we identified 18 OBPs from E. grisescens antennal transcriptome. All of the encoded proteins possessed N-terminal signal peptides and conserved cysteine residues, behaviors which are characteristic of insect OBPs. Phylogenetic analysis categorized these proteins into plus-C, minus-C, and classic OBP subfamilies. MEME motif analysis identified conserved sequence features potentially involved in odor detection. Tissue- and sex-specific expression profiling showed that EgriGOBP1-2, OBP3, OBP8, and OBP13 were highly expressed in the antennae of both sexes, suggesting roles in olfactory communication. Among them, EgriGOBP1-2, OBP3, and OBP13 exhibited similar expression levels between males and females, while other EgriOBPs were predominantly expressed in the legs, wings, or other tissues, indicating additional physiological functions beyond chemoreception. To investigate functional specificity, we selected antenna-enriched EgriGOBP2 for ligand-binding analysis. Fluorescence binding assays demonstrated that EgriGOBP2 exhibited broad binding affinity toward 8 of 12 host volatiles and 11 of 12 plant essential oil-derived volatiles. These combined findings lay the foundation for mechanistic studies of chemical recognition in E. grisescens and provide insights into the development of ecologically friendly pest control alternatives. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

28 pages, 15291 KiB  
Article
Impact of Ectropis grisescens Warren (Lepidoptera: Geometridae) Infestation on the Tea Plant Rhizosphere Microbiome and Its Potential for Enhanced Biocontrol and Plant Health Management
by He Liu, Wei Chen, Xiaohong Fang, Dongliang Li, Yulin Xiong, Wei Xie, Qiulian Chen, Yingying You, Chenchen Lin, Zhong Wang, Jizhou Wang, Danni Chen, Yanyan Li, Pumo Cai, Chuanpeng Nie and Yongcong Hong
Insects 2025, 16(4), 412; https://doi.org/10.3390/insects16040412 - 14 Apr 2025
Cited by 1 | Viewed by 1030
Abstract
The root-associated microbiome significantly influences plant health and pest resistance, yet the temporal dynamics of its compositional and functional change in response to Ectropis grisescens Warren (Lepidoptera: Geometridae) infestation remain largely unexplored. The study took samples of leaves, roots, and rhizosphere soil at [...] Read more.
The root-associated microbiome significantly influences plant health and pest resistance, yet the temporal dynamics of its compositional and functional change in response to Ectropis grisescens Warren (Lepidoptera: Geometridae) infestation remain largely unexplored. The study took samples of leaves, roots, and rhizosphere soil at different times after the plants were attacked by E. grisescens. These samples were analyzed using transcriptomic and high-throughput sequencing of 16S rRNA techniques. The goal was to understand how the plant’s defense mechanisms and the microbial community around the roots changed after the attack. Additionally, bacterial feedback assays were conducted to evaluate the effects of selected microbial strains on plant growth and pest defense responses. By conducting 16S rRNA sequencing on the collected soil samples, we found significant shifts in bacterial communities by the seventh day, suggesting a lag in community adaptation. Transcriptomic analysis revealed that E. grisescens attack induced reprogramming of the tea root transcriptome, upregulating genes related to defensive pathways such as phenylpropanoid and flavonoid biosynthesis. Metagenomic data indicated functional changes in the rhizosphere microbiome, with enrichment in genes linked to metabolic pathways and nitrogen cycling. Network analysis showed a reorganization of core microbial members, favoring nitrogen-fixing bacteria like Burkholderia species. Bacterial feedback assays confirmed that selected strains, notably Burkholderia cepacia strain ABC4 (T1) and a nine-strain consortium (T5), enhanced plant growth and defense responses, including elevated levels of flavonoids, polyphenols, caffeine, jasmonic acid, and increased peroxidase (POD) and superoxide dismutase (SOD) activities. This study emphasizes the potential of utilizing root-associated microbial communities for sustainable pest management in tea cultivation, thereby enhancing resilience in tea crops while maintaining ecosystem balance. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

9 pages, 2646 KiB  
Communication
The Mitochondrial Genomes of Two Parasitoid Wasps Protapanteles immunis and Parapanteles hyposidrae (Hymenoptera: Braconidae) with Phylogenetic Implications and Novel Gene Rearrangements
by Dandan Xiao, Ziqi Wang, Jiachen Zhu, Xiaogui Zhou, Pu Tang and Xuexin Chen
Genes 2023, 14(1), 230; https://doi.org/10.3390/genes14010230 - 16 Jan 2023
Cited by 1 | Viewed by 2201
Abstract
Parapanteles hypsidrae (Wilkinson, 1928) and Protapanteles immunis (Haliday, 1834) are the most important parasitic wasps of Ectropis grisescens Warren and Ectropis obliqua (Prout). We sequenced and annotated the mitochondrial genomes of Pa. hyposidrae and Pr. immunis, which are 17,063 bp and 16,397 [...] Read more.
Parapanteles hypsidrae (Wilkinson, 1928) and Protapanteles immunis (Haliday, 1834) are the most important parasitic wasps of Ectropis grisescens Warren and Ectropis obliqua (Prout). We sequenced and annotated the mitochondrial genomes of Pa. hyposidrae and Pr. immunis, which are 17,063 bp and 16,397 bp in length, respectively, and possess 37 mitochondrial genes. We discovered two novel types of gene rearrangement, the local inversion of nad4L in Pa. hyposidrae and the remote inversion of the block cox3-nad3-nad5-nad4 in Pr. immunis, within the mitogenomes of Braconidae. The phylogenetic analysis supported the subfamily Microgastrinae is a monophyletic group, but the tribes Apantelini and Cotesiini within this subfamily are paraphyletic groups. Full article
(This article belongs to the Special Issue Advanced Research on Mitochondrial Genome)
Show Figures

Figure 1

12 pages, 2104 KiB  
Article
Larval-Transcriptome Dynamics of Ectropis grisescens Reveals Differences in Virulence Mechanism between Two EcobNPV Strains
by Xinxin Zhang, Yang Mei, Hong Li, Meijun Tang, Kang He and Qiang Xiao
Insects 2022, 13(12), 1088; https://doi.org/10.3390/insects13121088 - 26 Nov 2022
Cited by 1 | Viewed by 1583
Abstract
The biological insecticide, Ectropis obliqua nucleopolyhedrovirus (EcobNPV), has been applied to control the major tea-pest Ectropis grisescens. Previously, the virus strain EcobNPV-QF4 showed higher a mortality rate (58.2% vs. 88.2%) and shorter median lethal-time (13.9 d vs. 15.4 d) on E. grisescens [...] Read more.
The biological insecticide, Ectropis obliqua nucleopolyhedrovirus (EcobNPV), has been applied to control the major tea-pest Ectropis grisescens. Previously, the virus strain EcobNPV-QF4 showed higher a mortality rate (58.2% vs. 88.2%) and shorter median lethal-time (13.9 d vs. 15.4 d) on E. grisescens than the strain EcobNPV-QV. However, the mechanism of the difference in virulence between the two strains remains unclear. Using the leaf-disc method, we detected the virulence of the two strains on 3rd-instar larvae, and found that median lethal-dose (LD50) of EcobNPV-QF4 is 55-fold higher than that of EcobNPV-QV (4.35 × 108 vs. 7.89 × 106). Furthermore, fourteen larva transcriptomes of E. grisescens were subsequently sequenced at seven time-points after ingestion of the two virus strains, yielding 410.72 Gb of raw reads. Differential gene-expression analysis shows that 595, 87, 27, 108, 0, 12, and 290 genes were up-regulated in EcobNPV-QF4 at 0, 2, 6, 12, 24, 36 h and 48 h post ingestion (hpi), while 744, 68, 152, 8, 1, 0, 225 were down-regulated. KEGG enrichment showed that when the virus first invades (eats the leaf-discs), EcobNPV-QF4 mainly affects pathways such as ribosome (p-value = 2.47 × 10−29), and at 48 hpi EcobNPV-QF4, causes dramatic changes in the amino-acid-synthesis pathway and ribosome pathway (p-value = 6.94 × 10−13) in E. grisescens. Among these, thirteen key genes related to immunity were screened. The present study provides the first ever comprehensive analysis of transcriptional changes in E. grisescens after ingestion of the two strains of EcobNPV. Full article
Show Figures

Figure 1

11 pages, 1388 KiB  
Article
The Potential of Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae) as Biocontrol Agents for the Tea Grey Geometrid Ectropis grisescens (Lepidoptera)
by Zi-Qi Wang, Xiao-Gui Zhou, Qiang Xiao, Pu Tang and Xue-Xin Chen
Insects 2022, 13(10), 937; https://doi.org/10.3390/insects13100937 - 16 Oct 2022
Cited by 6 | Viewed by 2085
Abstract
The tea grey geometrid Ectropis grisescens has long been a significant insect pest of tea plants in China. Two parasitoids, Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae: Microgastrinae), are the most important parasitoids in the larval stage of E. grisescens. Yet, the [...] Read more.
The tea grey geometrid Ectropis grisescens has long been a significant insect pest of tea plants in China. Two parasitoids, Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae: Microgastrinae), are the most important parasitoids in the larval stage of E. grisescens. Yet, the potential of these two parasitoids for controlling the tea grey geometrid is not known. Here, we studied the parasitism performance of these two parasitoid species on different host densities under different temperatures as well as the interference effect of parasitoid density. The results showed that both parasitoid species, Pa. hyposidrae and Pr. immunis, exhibited a Type II functional response towards the tea grey geometrid E. grisescens at four tested temperatures. With increasing the density of E. grisescens larvae, the number of parasitized larvae increased until a maximum was reached. The highest number of hosts parasitized by Pa. hyposidrae or Pr. immunis reached 14.5 or 14.75 hosts d−1 at 22 °C, respectively. The estimated values of instantaneous searching efficiency (a) and handling time (h) for Pa. hyposidrae or Pr. immunis were 1.420 or 3.621 and 0.04 or 0.053 at 22 °C, respectively. Pr. immunis performed better than Pa. hyposidrae under higher temperatures. The parasitism rate by a single female parasitoid decreased with increasing parasitoid density at different temperatures, resulting in a reduction of searching efficiency. The findings of this study showed that Pr.immunis could be a better effective biocontrol agent than Pa. hyposidrae against the tea grey geometrid. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 3845 KiB  
Article
Development and Evaluation of Sex Pheromone Mass Trapping Technology for Ectropis grisescens: A Potential Integrated Pest Management Strategy
by Zongxiu Luo, Fida Hussain Magsi, Zhaoqun Li, Xiaoming Cai, Lei Bian, Yan Liu, Zhaojun Xin, Chunli Xiu and Zongmao Chen
Insects 2020, 11(1), 15; https://doi.org/10.3390/insects11010015 - 23 Dec 2019
Cited by 16 | Viewed by 6665
Abstract
Since the identification of the Ectropis grisescens sex pheromone, no effective control technology based on this pheromone has yet been developed and evaluated. In this study, pheromone proportion and dosage, sustained-release dispensers, and pheromone lure-matched traps were optimized. The mass trapping technology developed [...] Read more.
Since the identification of the Ectropis grisescens sex pheromone, no effective control technology based on this pheromone has yet been developed and evaluated. In this study, pheromone proportion and dosage, sustained-release dispensers, and pheromone lure-matched traps were optimized. The mass trapping technology developed with the above optimized parameters was tested in a field trial. The results show that two compounds, (Z,Z,Z)-3,6,9-octadecatriene and (Z,Z)-3,9-cis-6,7-epoxy-octadecadiene, at a ratio of 30:70 and impregnated into rubber septa at 1 mg, were the most attractive to male moths. These compounds provided the best performance when combined with a sticky wing trap. Adult male moth monitoring data showed that there was a lower population density in the trapping plot compared with the control plot, and there was a clear difference during the peak adult occurrence of the first five insect generations in 2017. The effect of mass trapping on the larva population was investigated in 2018; the control efficiency reached 49.27% after trapping of one generation of adults and was further reduced to 67.16% after two successive adult moth generations, compared with the control plot. The results of the present study provide a scientific basis for the establishment of sex pheromone-based integrated pest management strategies. Full article
Show Figures

Figure 1

15 pages, 3019 KiB  
Article
Transcriptomic Analysis Reveals Insect Hormone Biosynthesis Pathway Involved in Desynchronized Development Phenomenon in Hybridized Sibling Species of Tea Geometrids (Ectropis grisescens and Ectropis obliqua)
by Zhibo Wang, Jiahe Bai, Yongjian Liu, Hong Li, Shuai Zhan and Qiang Xiao
Insects 2019, 10(11), 381; https://doi.org/10.3390/insects10110381 - 1 Nov 2019
Cited by 16 | Viewed by 6188
Abstract
Ectropis grisescens and Ectropis obliqua are sibling species of tea-chewing pests. An investigation of the distribution of tea geometrids was implemented for enhancing controlling efficiency. E. grisescens is distributed across a wider range of tea-producing areas than Ectropis obliqua in China with sympatric [...] Read more.
Ectropis grisescens and Ectropis obliqua are sibling species of tea-chewing pests. An investigation of the distribution of tea geometrids was implemented for enhancing controlling efficiency. E. grisescens is distributed across a wider range of tea-producing areas than Ectropis obliqua in China with sympatric distribution found in some areas. In order to explore reproductive isolation mechanisms in co-occurrence areas, hybridization experiments were carried out. Results showed they can mate but produce infertile hybrids. During experiments, the desynchronized development phenomenon was found in the hybridized generation of sibling tea geometrids. Furthermore, transcriptome analysis of those individuals of fast-growing and slow-growing morphs revealed that the insect hormone biosynthesis pathway was enriched in two unsynchronized development groups of hybrid offspring. More importantly, some genes regulating the synthesis of moulting hormone showed significantly up-regulated expression in fast-growing groups. Above all, metabolism of the juvenile hormone and synthesis of the ecdysone pathway were found to be crucially involved in the desynchronized development phenomenon. This research finding contributes to a better understanding of the mechanisms of insect development and reproductive isolation of two sibling species. Full article
Show Figures

Graphical abstract

Back to TopTop