Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Echinophthiriidae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6331 KiB  
Article
The Sensory Equipment of Diving Lice, a Host Ecology-Based Comparative Study
by Paula Olivera, Claudio R. Lazzari and María Soledad Leonardi
Insects 2025, 16(6), 574; https://doi.org/10.3390/insects16060574 - 29 May 2025
Viewed by 600
Abstract
Seal lice (Anoplura) parasitize amphibious hosts, such as pinnipeds, and are uniquely adapted to an oceanic environment. As obligate, permanent ectoparasites feed on the blood of their hosts and are completely dependent on them. While studies have begun to explore general diving adaptations, [...] Read more.
Seal lice (Anoplura) parasitize amphibious hosts, such as pinnipeds, and are uniquely adapted to an oceanic environment. As obligate, permanent ectoparasites feed on the blood of their hosts and are completely dependent on them. While studies have begun to explore general diving adaptations, research into seal lice’s sensory biology remains limited. In contrast to the vast majority of insects, including human lice, seal lice are devoid of eyes and depend on antennal sensory reception. This study aims to describe the morphology and putative function of antennal sensilla in five seal lice species: Antarctophthirus microchir, A. carlinii, A. lobodontis, A. ogmorhini, and Lepidophthirus macrorhini, which parasitize the South American sea lion, Weddell seal, crabeater seal, leopard seal, and southern elephant seal, respectively. The antennal structures of each species were analyzed using scanning electron microscopy, and eight morphotypes were identified: spine, cuticular lobe, sensilla squamiformia, sensilla chaetica, sensilla basiconica I and II, tuft organs, and pore organs. The morphology of sensilla and their distribution on the antennal flagellum exhibited variability among genera and species. For instance, the southern elephant louse (Lepidophthirus macrorhini) is characterized by the presence of sensilla squamiformia, while Antarctophthirus spp. are distinguished by sensilla chaetica. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

9 pages, 1801 KiB  
Review
How Did Seal Lice Turn into the Only Truly Marine Insects?
by María Soledad Leonardi, José E. Crespo, Florencia Soto and Claudio R. Lazzari
Insects 2022, 13(1), 46; https://doi.org/10.3390/insects13010046 - 31 Dec 2021
Cited by 15 | Viewed by 7542
Abstract
Insects are the most evolutionarily and ecologically successful group of living animals, being present in almost all possible mainland habitats; however, they are virtually absent in the ocean, which constitutes more than 99% of the Earth’s biosphere. Only a few insect species can [...] Read more.
Insects are the most evolutionarily and ecologically successful group of living animals, being present in almost all possible mainland habitats; however, they are virtually absent in the ocean, which constitutes more than 99% of the Earth’s biosphere. Only a few insect species can be found in the sea but they remain at the surface, in salt marshes, estuaries, or shallow waters. Remarkably, a group of 13 species manages to endure long immersion periods in the open sea, as well as deep dives, i.e., seal lice. Sucking lice (Phthiraptera: Anoplura) are ectoparasites of mammals, living while attached to the hosts’ skin, into their fur, or among their hairs. Among them, the family Echinophthiriidae is peculiar because it infests amphibious hosts, such as pinnipeds and otters, who make deep dives and spend from weeks to months in the open sea. During the evolutionary transition of pinnipeds from land to the ocean, echinophthiriid lice had to manage the gradual change to an amphibian lifestyle along with their hosts, some of which may spend more than 80% of the time submerged and performing extreme dives, some beyond 2000 m under the surface. These obligate and permanent ectoparasites have adapted to cope with hypoxia, high salinity, low temperature, and, in particular, conditions of huge hydrostatic pressures. We will discuss some of these adaptations allowing seal lice to cope with their hosts’ amphibious habits and how they can help us understand why insects are so rare in the ocean. Full article
Show Figures

Figure 1

Back to TopTop