Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Eastern Grey Kangaroo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 865 KiB  
Article
Beyond Boundaries—Genetic Implications of Urbanisation and Isolation in Eastern Grey Kangaroos (Macropus giganteus)
by Elizabeth Brunton, Alexis Levengood, Aaron Brunton, Neil Clarke, Graeme Coulson, Claire Wimpenny and Gabriel Conroy
Urban Sci. 2025, 9(7), 257; https://doi.org/10.3390/urbansci9070257 - 3 Jul 2025
Viewed by 611
Abstract
Understanding how urbanisation and habitat fragmentation influence wildlife is critical for biodiversity conservation. Fragmentation and population isolation can reduce genetic diversity, yet few studies have assessed these genetic impacts in urbanised environments. Eastern grey kangaroos (Macropus giganteus), widespread across eastern Australia, [...] Read more.
Understanding how urbanisation and habitat fragmentation influence wildlife is critical for biodiversity conservation. Fragmentation and population isolation can reduce genetic diversity, yet few studies have assessed these genetic impacts in urbanised environments. Eastern grey kangaroos (Macropus giganteus), widespread across eastern Australia, often inhabit landscapes shaped by urbanisation. Using single nucleotide polymorphism (SNP) data from scat and tissue samples, we compared genetic characteristics of kangaroo populations in urban and non-urban areas across three regions. We assessed the influence of habitat isolation on genetic diversity and relatedness at 18 study sites. Overall, urban populations did not show significantly lower genetic diversity than those in less developed areas (p > 0.05; Urban mean HO = 0.196, Non-urban mean HO = 0.188). However, populations fully isolated by roads, buildings, and fences exhibited reduced genetic diversity and increased inbreeding. Additionally, significant genetic differences were observed among regions. These findings suggest that while urbanisation alone may not always reduce genetic diversity, complete physical isolation poses greater risks to population genetic health. This study highlights how urban landscape features can shape the genetics of large terrestrial mammals and underscores the need for spatially informed urban planning and management strategies that maintain or restore habitat connectivity. Full article
Show Figures

Figure 1

65 pages, 5560 KiB  
Article
Mobility Confers Resilience in Red Kangaroos (Osphranter rufus) to a Variable Climate and Coexisting Herbivores (Sheep, Goats, Rabbits and Three Sympatric Kangaroo Species) in an Arid Australian Rangeland
by David B. Croft and Ingrid Witte
Diversity 2025, 17(6), 389; https://doi.org/10.3390/d17060389 - 30 May 2025
Viewed by 356
Abstract
In a 1975 review, red kangaroos in the arid rangelands of Australia were said to be favoured with an anomalous prosperity following the introduction of ruminant livestock. In the western and central locations reviewed, this was not sustained, but in the sheep rangelands [...] Read more.
In a 1975 review, red kangaroos in the arid rangelands of Australia were said to be favoured with an anomalous prosperity following the introduction of ruminant livestock. In the western and central locations reviewed, this was not sustained, but in the sheep rangelands of Southern Australia, it is often claimed that such prosperity continues. Here, as elsewhere, the marsupial herbivore guild (kangaroos, wallabies, bettongs and bandicoots) has been simplified by the extinction of the smaller species (the anomaly), while large kangaroos remain abundant. However, the mammalian herbivore guild has gained complexity with not only the introduction of managed ruminant livestock, some of which run wild, but also game like rabbits. We studied the population dynamics, habitat selection and individual mobility of red, western and eastern grey kangaroos, common wallaroos, Merino sheep, feral goats and European rabbits at Fowlers Gap Station in far northwestern New South Wales, Australia. This site is representative of the arid chenopod (Family: Chenopodiaceae) shrublands stocked with sheep, where sheep and red kangaroos dominate the mammalian herbivores by biomass. The study site comprised two contiguous pairs of stocked and unstocked paddocks: a sloping run-off zone and a flat run-on zone, covering a total area of 2158 ha. This three-year study included initial rain-deficient (drought) months followed by more regular rainfall. Red kangaroos showed avoidance of sheep when given the opportunity and heightened mobility in response to localized drought-breaking storms and dispersion of the sheep flock at lambing. Western grey kangaroos were sedentary and did not dissociate from sheep. These effects were demonstrated at the population level and the individual level through radio-tracking a small cohort of females. The other kangaroo species and goats were transient and preferred other habitats. Rabbits were persistent and localized without strong interactions with other species. The results are discussed with a focus on the red kangaroo and some causes for its resilience in the sheep rangelands. Full article
(This article belongs to the Special Issue Ecology, Evolution and Conservation of Marsupials)
Show Figures

Figure 1

55 pages, 12058 KiB  
Article
Who Eats the Grass? Grazing Pressure and Interactions Between Wild Kangaroos, Feral Goats and Rabbits, and Domestic Sheep on an Arid Australian Rangeland
by Ingrid Witte and David B. Croft
Wild 2025, 2(1), 5; https://doi.org/10.3390/wild2010005 - 26 Feb 2025
Cited by 1 | Viewed by 2060
Abstract
This study examined the grazing pressure and interactions between four species of wild kangaroos (Red Kangaroo Osphranter rufus, Common Wallaroo O. robustus, Eastern Grey Kangaroo Macropus giganteus, Western Grey Kangaroo M. fuliginosus), free-ranging feral goats (Capra hircus) [...] Read more.
This study examined the grazing pressure and interactions between four species of wild kangaroos (Red Kangaroo Osphranter rufus, Common Wallaroo O. robustus, Eastern Grey Kangaroo Macropus giganteus, Western Grey Kangaroo M. fuliginosus), free-ranging feral goats (Capra hircus) and European rabbits (Oryctolagus cuniculus), and stocked Merino sheep (Ovis aries). The study site comprised two contiguous pairs of stocked and unstocked paddocks, one a sloping run-off zone, the other a flat run-on zone, covering a total area of 2158 ha. These paddocks on Fowlers Gap Station in far north-western New South Wales, Australia, are representative of the arid chenopod (Family: Chenopodiaceae) shrublands stocked with sheep. Sheep and red kangaroos dominate the mammalian herbivores by biomass. The study examined the relative grazing pressure exerted by the seven species of mammalian herbivores in stocked and unstocked conditions, where only sheep were confined, across a three-year period that included rain-deficient (drought) months. The effects of climate (especially rainfall and temperature) and herbivore density on the standing biomass of pasture were teased out at a macro-scale. Herbivory at a micro-scale was examined using open and exclosed plots with detection of herbivore species by fecal deposition and time-lapse videography. Sheep exerted the highest grazing pressure and there was no compensatory increase in grazing pressure by other herbivores in unstocked paddocks. Rainfall was a key driver of pasture biomass and condition and loss by senescence typically outweighed grazing pressure. Grazing effects at a micro-scale were plot-specific and complex. The results are discussed in relation to the sustainable management of rangelands for production and wildlife. Full article
Show Figures

Figure 1

13 pages, 498 KiB  
Article
Characterising Eastern Grey Kangaroos (Macropus giganteus) as Hosts of Coxiella burnetii
by Anita Tolpinrud, Elizabeth Dobson, Catherine A. Herbert, Rachael Gray, John Stenos, Anne-Lise Chaber, Joanne M. Devlin and Mark A. Stevenson
Microorganisms 2024, 12(7), 1477; https://doi.org/10.3390/microorganisms12071477 - 19 Jul 2024
Cited by 1 | Viewed by 1714
Abstract
Macropods are often implicated as the main native Australian reservoir hosts of Coxiella burnetii (Q fever); however, the maintenance and transmission capacity of these species are poorly understood. The objective of this cross-sectional study was to describe the epidemiology of C. burnetii in [...] Read more.
Macropods are often implicated as the main native Australian reservoir hosts of Coxiella burnetii (Q fever); however, the maintenance and transmission capacity of these species are poorly understood. The objective of this cross-sectional study was to describe the epidemiology of C. burnetii in a high-density population of eastern grey kangaroos (Macropus giganteus) in a peri-urban coastal nature reserve in New South Wales, Australia. Blood, faeces and swabs were collected from forty kangaroos as part of a population health assessment. Frozen and formalin-fixed tissues were also collected from 12 kangaroos euthanised on welfare grounds. Specimens were tested for C. burnetii using PCR, serology, histopathology and immunohistochemistry. A total of 33/40 kangaroos were seropositive by immunofluorescence assay (estimated true seroprevalence 84%, 95% confidence interval [CI] 69% to 93%), with evidence of rising titres in two animals that had been tested four years earlier. The PCR prevalence was 65% (95% CI 48% to 79%), with positive detection in most sample types. There was no evidence of pathology consistent with C. burnetii, and immunohistochemistry of PCR-positive tissues was negative. These findings indicate that kangaroos are competent maintenance hosts of C. burnetii, likely forming a significant part of its animal reservoir at the study site. Full article
(This article belongs to the Special Issue Pathogen Infection in Wildlife 2.0)
Show Figures

Figure 1

17 pages, 4779 KiB  
Article
Using Remote Sensing to Estimate Understorey Biomass in Semi-Arid Woodlands of South-Eastern Australia
by Linda Riquelme, David H. Duncan, Libby Rumpff and Peter Anton Vesk
Remote Sens. 2022, 14(10), 2358; https://doi.org/10.3390/rs14102358 - 13 May 2022
Cited by 3 | Viewed by 2626
Abstract
Monitoring ground layer biomass, and therefore forage availability, is important for managing large, vertebrate herbivore populations for conservation. Remote sensing allows for frequent observations over broad spatial scales, capturing changes in biomass over the landscape and through time. In this study, we explored [...] Read more.
Monitoring ground layer biomass, and therefore forage availability, is important for managing large, vertebrate herbivore populations for conservation. Remote sensing allows for frequent observations over broad spatial scales, capturing changes in biomass over the landscape and through time. In this study, we explored different satellite-derived vegetation indices (VIs) for their utility in estimating understorey biomass in semi-arid woodlands of south-eastern Australia. Relationships between VIs and understorey biomass data have not been established in these particular semi-arid communities. Managers want to use forage availability to inform cull targets for western grey kangaroos (Macropus fuliginosus), to minimise the risk that browsing poses to regeneration in threatened woodland communities when grass biomass is low. We attempted to develop relationships between VIs and understorey biomass data collected over seven seasons across open and wooded vegetation types. Generalised Linear Mixed Models (GLMMs) were used to describe relationships between understorey biomass and VIs. Total understorey biomass (live and dead, all growth forms) was best described using the Tasselled Cap (TC) greenness index. The combined TC brightness and Modified Soil Adjusted Vegetation Index (MSAVI) ranked best for live understorey biomass (all growth forms), and grass (live and dead) biomass was best described by a combination of TC brightness and greenness indices. Models performed best for grass biomass, explaining 70% of variation in external validation when predicting to the same sites in a new season. However, we found empirical relationships were not transferrable to data collected from new sites. Including other variables (soil moisture, tree cover, and dominant understorey growth form) improved model performance when predicting to new sites. Anticipating a drop in forage availability is critical for the management of grazing pressure for woodland regeneration, however, predicting understorey biomass through space and time is a challenge. Whilst remotely sensed VIs are promising as an easily-available source of vegetation information, additional landscape-scale data are required before they can be considered a cost-efficient method of understorey biomass estimation in this semi-arid landscape. Full article
Show Figures

Graphical abstract

15 pages, 5928 KiB  
Article
The Impacts of Drought on the Health and Demography of Eastern Grey Kangaroos
by Loic Quentin Juillard and Daniel Ramp
Animals 2022, 12(3), 256; https://doi.org/10.3390/ani12030256 - 21 Jan 2022
Cited by 7 | Viewed by 4423
Abstract
Extreme climatic events such as droughts and floods are expected to become more intense and severe under climate change, especially in the southern and eastern parts of Australia. We aimed to quantify the relationship between body condition scores (BCS), demography, activity rate, and [...] Read more.
Extreme climatic events such as droughts and floods are expected to become more intense and severe under climate change, especially in the southern and eastern parts of Australia. We aimed to quantify the relationship between body condition scores (BCS), demography, activity rate, and parasitic infections of eastern grey kangaroos on a large conservation property under different climate extremes by employing camera traps established at artificial water points (AWPs). The survey period included a severe drought, broken by a significant flooding event. Climatic and environmental conditions were documented using remotely sensed indices of moisture availability and vegetation productivity. These conditions were found to affect all health and population parameters measured. BCS, juvenile proportions, and sex ratios were most correlated with 6-month lags in climatic conditions, while the activity rate of kangaroos at AWPs was most correlated with vegetation productivity. Ticks were mostly found on individuals with a poorer BCS, while the concentration of parasitic eggs in feces was higher in autumn than in spring. Our study offers a glimpse into some of the environmental drivers of eastern grey kangaroo populations and their health, information that may become increasingly important in today’s climate. It further emphasizes the importance of this knowledge for wildlife conservation efforts appropriate to managing the impact of climate change alongside other threats. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

10 pages, 1405 KiB  
Article
Genetic Structure and Gene Flow in Eastern Grey Kangaroos in an Isolated Conservation Reserve
by Miriam A. Zemanova and Daniel Ramp
Diversity 2021, 13(11), 570; https://doi.org/10.3390/d13110570 - 8 Nov 2021
Cited by 6 | Viewed by 3347
Abstract
Dispersal is a key process for population persistence, particularly in fragmented landscapes. Connectivity between habitat fragments can be easily estimated by quantifying gene flow among subpopulations. However, the focus in ecological research has been on endangered species, typically excluding species that are not [...] Read more.
Dispersal is a key process for population persistence, particularly in fragmented landscapes. Connectivity between habitat fragments can be easily estimated by quantifying gene flow among subpopulations. However, the focus in ecological research has been on endangered species, typically excluding species that are not of current conservation concern. Consequently, our current understanding of the behaviour and persistence of many species is incomplete. A case in point is the eastern grey kangaroo (Macropus giganteus), an Australian herbivore that is subjected to considerable harvesting and population control efforts. In this study, we used non-invasive genetic sampling of eastern grey kangaroos within and outside of the Mourachan Conservation Property to assess functional connectivity. In total, we genotyped 232 samples collected from 17 locations at 20 microsatellite loci. The clustering algorithm indicated the presence of two clusters, with some overlap between the groups within and outside of the reserve. This genetic assessment should be repeated in 10–15 years to observe changes in population structure and gene flow over time, monitoring the potential impact of the planned exclusion fencing around the reserve. Full article
Show Figures

Figure 1

15 pages, 2326 KiB  
Article
Microbial Diversity Profiling of Gut Microbiota of Macropus giganteus Using Three Hypervariable Regions of the Bacterial 16S rRNA
by Christian O’Dea, Roger Huerlimann, Nicole Masters, Anna Kuballa, Cameron Veal, Paul Fisher, Helen Stratton and Mohammad Katouli
Microorganisms 2021, 9(8), 1721; https://doi.org/10.3390/microorganisms9081721 - 12 Aug 2021
Cited by 5 | Viewed by 3199
Abstract
Animal faecal contamination of surface waters poses a human health risk, as they may contain pathogenic bacteria or viruses. Of the numerous animal species residing along surface waterways in Australia, macropod species are a top contributor to wild animals’ faecal pollution load. We [...] Read more.
Animal faecal contamination of surface waters poses a human health risk, as they may contain pathogenic bacteria or viruses. Of the numerous animal species residing along surface waterways in Australia, macropod species are a top contributor to wild animals’ faecal pollution load. We characterised the gut microbiota of 30 native Australian Eastern Grey Kangaroos from six geographical regions (five kangaroos from each region) within South East Queensland in order to establish their bacterial diversity and identify potential novel species-specific bacteria for the rapid detection of faecal contamination of surface waters by these animals. Using three hypervariable regions (HVRs) of the 16S rRNA gene (i.e., V1–V3, V3–V4, and V5–V6), for their effectiveness in delineating the gut microbial diversity, faecal samples from each region were pooled and microbial genomic DNA was extracted, sequenced, and analysed. Results indicated that V1-V3 yielded a higher taxa richness due to its larger target region (~480 bp); however, higher levels of unassigned taxa were observed using the V1-V3 region. In contrast, the V3–V4 HVR (~569 bp) attained a higher likelihood of a taxonomic hit identity to the bacterial species level, with a 5-fold decrease in unassigned taxa. There were distinct dissimilarities in beta diversity between the regions, with the V1-V3 region displaying the highest number of unique taxa (n = 42), followed by V3–V4 (n = 11) and V5–V6 (n = 8). Variations in the gut microbial diversity profiles of kangaroos from different regions were also observed, which indicates that environmental factors may impact the microbial development and, thus, the composition of the gut microbiome of these animals. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

18 pages, 4484 KiB  
Article
Torquenema n. g., Wallabicola n. g., and Macropostrongyloides phascolomys n. sp.: New Genera and a New Species of Nematode (Strongylida: Phascolostrongylinae) Parasitic in Australian Macropodid and Vombatid Marsupials
by Tanapan Sukee, Ian Beveridge and Abdul Jabbar
Animals 2021, 11(1), 175; https://doi.org/10.3390/ani11010175 - 13 Jan 2021
Cited by 4 | Viewed by 2309
Abstract
The strongyloid nematodes belonging to the subfamily Phascolostrongylinae occur primarily in the large intestines of macropodid and vombatid marsupials. Current molecular evidence suggests that the two nematode species, Macropostrongyloides dissimilis and Paramacropostrongylus toraliformis, from macropodid marsupials are distant from their respective congeners. [...] Read more.
The strongyloid nematodes belonging to the subfamily Phascolostrongylinae occur primarily in the large intestines of macropodid and vombatid marsupials. Current molecular evidence suggests that the two nematode species, Macropostrongyloides dissimilis and Paramacropostrongylus toraliformis, from macropodid marsupials are distant from their respective congeners. Furthermore, specimens of Macropostrongyloides lasiorhini from the large intestines of the southern hairy-nosed wombat (Lasiorhinus latifrons) and the common wombat (Vombatus ursinus) are genetically distinct. This study aimed to describe the new genera Torquenema n. g. (with T. toraliforme n. comb. as the type species) from the eastern grey kangaroo, Wallabicola n. g. (with W. dissimilis n. comb. as the type species) from the swamp wallaby and a new species Macropostrongyloides phascolomys n. sp. from the common wombat, using light and scanning electron microscopy. Full article
(This article belongs to the Special Issue Parasites and Parasitic Diseases)
Show Figures

Figure 1

12 pages, 560 KiB  
Article
Phylogenetic Relationships within the Nematode Subfamily Phascolostrongylinae (Nematoda: Strongyloidea) from Australian Macropodid and Vombatid Marsupials
by Tanapan Sukee, Ian Beveridge, Ahmad Jawad Sabir and Abdul Jabbar
Microorganisms 2021, 9(1), 9; https://doi.org/10.3390/microorganisms9010009 - 22 Dec 2020
Cited by 6 | Viewed by 2338
Abstract
The strongyloid nematode subfamily Phascolostrongylinae comprises parasites of the large intestine and stomach of Australian macropods and wombats. In this study, we tested the phylogenetic relationships among the genera of the Phascolostrongylinae using the first and second internal transcribed spacers of the nuclear [...] Read more.
The strongyloid nematode subfamily Phascolostrongylinae comprises parasites of the large intestine and stomach of Australian macropods and wombats. In this study, we tested the phylogenetic relationships among the genera of the Phascolostrongylinae using the first and second internal transcribed spacers of the nuclear ribosomal DNA. Monophyly was encountered in the tribe Phascolostrongylinea comprising two genera, Phascolostrongylus and Oesophagostomoides, found exclusively in the large intestine of wombats. The tribe Hypodontinea, represented by the genera Hypodontus and Macropicola from the ileum and large intestine of macropods, was also found to be monophyletic. The tribe Macropostrongyloidinea, comprising the genera Macropostrongyloides and Paramacropostrongylus, was paraphyletic with the species occurring in the stomach grouping separately from those found in the large intestines of their hosts. However, Macropostrongyloidesdissimilis from the stomach of the swamp wallaby and Paramacropostrongylus toraliformis from the large intestine of the eastern grey kangaroo were distinct from their respective congeners. This study provided strong support for the generic composition of the tribe Phascolostrongylinea. The unexpected finding of M. dissimilis and P. toraliformis being distantly related to their respective congeners suggests a requirement for future taxonomic revision that may warrant separation of these species at the generic level. Full article
(This article belongs to the Special Issue Wildlife Microbiology 2.0)
Show Figures

Figure 1

13 pages, 2781 KiB  
Article
Evaluating the Efficacy and Optimal Deployment of Thermal Infrared and True-Colour Imaging When Using Drones for Monitoring Kangaroos
by Elizabeth A. Brunton, Javier X. Leon and Scott E. Burnett
Drones 2020, 4(2), 20; https://doi.org/10.3390/drones4020020 - 27 May 2020
Cited by 31 | Viewed by 7000
Abstract
Advances in drone technology have given rise to much interest in the use of drone-mounted thermal imagery in wildlife monitoring. This research tested the feasibility of monitoring large mammals in an urban environment and investigated the influence of drone flight parameters and environmental [...] Read more.
Advances in drone technology have given rise to much interest in the use of drone-mounted thermal imagery in wildlife monitoring. This research tested the feasibility of monitoring large mammals in an urban environment and investigated the influence of drone flight parameters and environmental conditions on their successful detection using thermal infrared (TIR) and true-colour (RGB) imagery. We conducted 18 drone flights at different altitudes on the Sunshine Coast, Queensland, Australia. Eastern grey kangaroos (Macropus giganteus) were detected from TIR (n=39) and RGB orthomosaics (n=33) using manual image interpretation. Factors that predicted the detection of kangaroos from drone images were identified using unbiased recursive partitioning. Drone-mounted imagery achieved an overall 73.2% detection success rate using TIR imagery and 67.2% using RGB imagery when compared to on-ground counts of kangaroos. We showed that the successful detection of kangaroos using TIR images was influenced by vegetation type, whereas detection using RGB images was influenced by vegetation type, time of day that the drone was deployed, and weather conditions. Kangaroo detection was highest in grasslands, and kangaroos were not successfully detected in shrublands. Drone-mounted TIR and RGB imagery are effective at detecting large mammals in urban and peri-urban environments. Full article
(This article belongs to the Special Issue She Maps)
Show Figures

Graphical abstract

12 pages, 1025 KiB  
Article
Eastern Grey Kangaroo (Macropus giganteus) Vigilance Behaviour Varies between Human-Modified and Natural Environments
by Georgina Hume, Elizabeth Brunton and Scott Burnett
Animals 2019, 9(8), 494; https://doi.org/10.3390/ani9080494 - 27 Jul 2019
Cited by 7 | Viewed by 6893
Abstract
Rapid increases in urban land use extent across the globe are creating challenges for many wildlife species. Urban landscapes present a novel environment for many species, yet our understanding of wildlife behavioural adaptations to urban environments is still poor. This study compared the [...] Read more.
Rapid increases in urban land use extent across the globe are creating challenges for many wildlife species. Urban landscapes present a novel environment for many species, yet our understanding of wildlife behavioural adaptations to urban environments is still poor. This study compared the vigilance behaviour of a large mammal in response to urbanisation at a landscape level. Here, we investigate urban (n = 12) and non-urban (n = 12) populations of kangaroos in two regions of Australia, and the relationship between kangaroo vigilance and urbanisation. We used a linear modelling approach to determine whether anti-predator vigilance and the number of vigilant acts performed were influenced by land use type (i.e., urban or non-urban), human population densities, kangaroo demographics, and environmental factors. Kangaroo behaviour differed between the two study regions; kangaroo vigilance was higher in urban than non-urban sites in the southern region, which also had the highest human population densities, however no effect of land use was found in the northern region. Season and sex influenced the vigilance levels across both regions, with higher levels seen in winter and female kangaroos. This study is the first to compare urban and non-urban vigilance of large mammals at a landscape level and provide novel insights into behavioural adaptations of large mammals to urban environments. Full article
(This article belongs to the Special Issue Behaviour and Management of Urban Wildlife)
Show Figures

Figure 1

16 pages, 26462 KiB  
Article
Behavioural Plasticity by Eastern Grey Kangaroos in Response to Human Behaviour
by Caitlin M. Austin and Daniel Ramp
Animals 2019, 9(5), 244; https://doi.org/10.3390/ani9050244 - 15 May 2019
Cited by 10 | Viewed by 6387
Abstract
Sharing landscapes with humans is an increasingly fraught challenge for wildlife across the globe. While some species benefit from humans by exploiting novel opportunities (e.g., provision of resources or removal of competitors or predators), many wildlife experience harmful effects, either directly through persecution [...] Read more.
Sharing landscapes with humans is an increasingly fraught challenge for wildlife across the globe. While some species benefit from humans by exploiting novel opportunities (e.g., provision of resources or removal of competitors or predators), many wildlife experience harmful effects, either directly through persecution or indirectly through loss of habitat. Consequently, some species have been shown to be attracted to human presence while others avoid us. For any given population of a single species, though, the question of whether they can recognise and change their response to human presence depending on the type of human actions (i.e., either positive or negative) has received little attention to date. In this study, we chose to examine the behavioural plasticity within a single population of eastern grey kangaroos (Macropus giganteus) to both positive and negative human activity. Within a relatively small and contiguous landscape, we identified areas where kangaroos experience a combination of either low and high frequencies of benign and harmful human disturbances. From six sampling sessions over five months, we found that density and group sizes were higher where humans acted benignly towards them, and that these groups had higher representations of sub-adults and juveniles than where humans had harmful intentions. Importantly, we found that the vital antipredator strategy of increasing group size with distance from cover was not detectable at sites with low and high levels of harm. Our findings suggest that these kangaroos are recognising and adjusting their behavioural response to humans at fine spatial scales, a plasticity trait that may be key to the survival of these species in human dominated landscapes. Full article
(This article belongs to the Special Issue Behaviour and Management of Urban Wildlife)
Show Figures

Figure 1

11 pages, 658 KiB  
Article
Fright or Flight? Behavioural Responses of Kangaroos to Drone-Based Monitoring
by Elizabeth Brunton, Jessica Bolin, Javier Leon and Scott Burnett
Drones 2019, 3(2), 41; https://doi.org/10.3390/drones3020041 - 24 Apr 2019
Cited by 38 | Viewed by 8889
Abstract
Drones are often considered an unobtrusive method of monitoring terrestrial wildlife; however research into whether drones disturb wildlife is in its early stages. This research investigated the potential impacts of drone monitoring on a large terrestrial mammal, the eastern grey kangaroo (Macropus [...] Read more.
Drones are often considered an unobtrusive method of monitoring terrestrial wildlife; however research into whether drones disturb wildlife is in its early stages. This research investigated the potential impacts of drone monitoring on a large terrestrial mammal, the eastern grey kangaroo (Macropus giganteus), in urban and peri-urban environments. We assessed the response of kangaroos to drone monitoring by analysing kangaroo behaviour prior to and during drone deployments using a linear modelling approach. We also explored factors that influenced kangaroo responses including drone altitude, site characteristics and kangaroo population dynamics and demographics. We showed that drones elicit a vigilance response, but that kangaroos rarely fled from the drone. However, kangaroos were most likely to flee from a drone flown at an altitude of 30 m. This study suggests that drone altitude is a key consideration for minimising disturbance of large terrestrial mammals and that drone flights at an altitude of 60–100 m above ground level will minimise behavioural impacts. It also highlights the need for more research to assess the level of intrusion and other impacts that drone surveys have on the behaviour of wildlife and the accuracy of the data produced. Full article
Show Figures

Figure 1

10 pages, 1039 KiB  
Article
Using GPS Technology to Understand Spatial and Temporal Activity of Kangaroos in a Peri-Urban Environment
by Timothy Henderson, Karl Vernes, Gerhard Körtner and Rajanathan Rajaratnam
Animals 2018, 8(6), 97; https://doi.org/10.3390/ani8060097 - 17 Jun 2018
Cited by 14 | Viewed by 5591
Abstract
The increasing kangaroo occurrence in expanding peri-urban areas can be problematic when kangaroos become aggressive towards people and present a collision risk to motor vehicles. An improved understanding on kangaroo spatial and temporal activity patterns in the peri-urban environment is essential to manage [...] Read more.
The increasing kangaroo occurrence in expanding peri-urban areas can be problematic when kangaroos become aggressive towards people and present a collision risk to motor vehicles. An improved understanding on kangaroo spatial and temporal activity patterns in the peri-urban environment is essential to manage kangaroo–human conflict. In this study, we used GPS telemetry to determine activity patterns of male Eastern Grey Kangaroos (Macropus giganteus) in a peri-urban community on the north-coast of New South Wales, Australia. Two types of GPS devices were employed; collars and cheaper alternative glue-on units. Kangaroos moved on average 2.39 km a day, with an average movement rate of 1.89 m/min, which was greatest at dawn. The GPS glue-on devices had short deployment lengths of one to 12 days. Despite limitations in attachment time, the glue-on devices were viable in obtaining daily spatial and temporal activity data. Our results aid towards alleviating conflict with kangaroos by providing new insights into kangaroo movements and activity within a peri-urban environment and introduces a potential cheap GPS alternative for obtaining this data relative to more expensive collars. Full article
(This article belongs to the Special Issue Animal Management in the 21st Century)
Show Figures

Figure 1

Back to TopTop