Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = ER-mitochondria contact sites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5820 KiB  
Article
MIRO1 Is Required for Dynamic Increases in Mitochondria-ER Contact Sites and Mitochondrial ATP During the Cell Cycle
by Benney T. Endoni, Olha M. Koval, Chantal Allamargot, Tara Kortlever, Lan Qian, Riley J. Sadoski, Denise Juhr and Isabella M. Grumbach
Cells 2025, 14(7), 482; https://doi.org/10.3390/cells14070482 - 22 Mar 2025
Cited by 1 | Viewed by 1133
Abstract
Mitochondria-ER contact sites (MERCS) are vital for mitochondrial dynamics, lipid exchange, Ca2+ homeostasis, and energy metabolism. We examined whether mitochondrial metabolism changes during the cell cycle depend on MERCS dynamics and are regulated by the outer mitochondrial protein mitochondrial rho GTPase 1 [...] Read more.
Mitochondria-ER contact sites (MERCS) are vital for mitochondrial dynamics, lipid exchange, Ca2+ homeostasis, and energy metabolism. We examined whether mitochondrial metabolism changes during the cell cycle depend on MERCS dynamics and are regulated by the outer mitochondrial protein mitochondrial rho GTPase 1 (MIRO1). Wound healing was assessed in mice with fibroblast-specific deletion of MIRO1. Wild-type and MIRO1-/- fibroblasts and vascular smooth muscle cells were evaluated for proliferation, cell cycle progression, number of MERCS, distance, and protein composition throughout the cell cycle. Restoration of MIRO1 mutants was used to test the role of MIRO1 domains; Ca2+ transients and mitochondrial metabolism were evaluated using biochemical, immunodetection, and fluorescence techniques. MERCS increased in number during G1/S compared with during G0, which was accompanied by a notable rise in protein–protein interactions involving VDAC1 and IP3R as well as GRP75 and MIRO1 by proximity-ligation assays. Split-GFP ER/mitochondrial contacts of 40 nm also increased. Mitochondrial Ca2+ concentration ([Ca2+]), membrane potential, and ATP levels correlated with the formation of MERCS during the cell cycle. MIRO1 deficiency blocked G1/S progression and the cell-cycle-dependent formation of MERCS and altered ER Ca2+ release and mitochondrial Ca2+ uptake. MIRO1 mutants lacking the Ca2+-sensitive EF hands or the transmembrane domain did not rescue cell proliferation or the formation of MERCS. MIRO1 controls an increase in the number of MERCS during cell cycle progression and increases mitochondrial [Ca2+], driving metabolic activity and proliferation through its EF hands. Full article
Show Figures

Figure 1

15 pages, 4731 KiB  
Article
Pharmacological Targeting of the NMDAR/TRPM4 Death Signaling Complex with a TwinF Interface Inhibitor Prevents Excitotoxicity-Associated Dendritic Blebbing and Organelle Damage
by Omar A. Ramírez, Andrea Hellwig, Zihong Zhang and Hilmar Bading
Cells 2025, 14(3), 195; https://doi.org/10.3390/cells14030195 - 28 Jan 2025
Viewed by 1409
Abstract
Focal swellings of dendrites (“dendritic blebbing”) together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called “overactivation” of N-methyl-D-aspartate receptors [...] Read more.
Focal swellings of dendrites (“dendritic blebbing”) together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called “overactivation” of N-methyl-D-aspartate receptors (NMDARs). Here, we demonstrate that the activation of extrasynaptic NMDARs, specifically when forming a protein–protein complex with TRPM4, drives these pathological traits. In contrast, strong activation of synaptic NMDARs fails to induce cell damage despite evoking plateau-type calcium signals that are comparable to those generated by activation of the NMDAR/TRPM4 complex, indicating that high intracellular calcium levels per se are not toxic to neurons. Using confocal laser scanning microscopy and transmission electron microscopy, we show that disrupting the NMDAR/TRPM4 complex using the recently discovered small-molecule TwinF interface inhibitor FP802 inhibits the NMDA-induced neurotoxicity-associated dendritic blebbing and structural damage to mitochondria and the ER. It also prevents, at least in part, the disruption of ER–mitochondria contact sites. These findings establish the NMDAR/TRPM4 complex as the trigger for the structural damage of dendrites and intracellular organelles associated with excitotoxicity. They also suggest that activation of the NMDAR/TRPM4 complex, in addition to inducing high-amplitude, plateau-type calcium signals, generates a second signal required for glutamate neurotoxicity (“two-hit hypothesis”). As structural damage to organelles, particularly mitochondria, is a common feature of many human neurodegenerative diseases, including Alzheimer’s disease and amyotrophic lateral sclerosis (ALS), TwinF interface inhibitors have the potential to provide neuroprotection across a broad spectrum of these diseases. Full article
(This article belongs to the Collection Membrane Damage and Repair in Organelles)
Show Figures

Figure 1

18 pages, 3494 KiB  
Article
Remodeling of Mitochondria–Endoplasmic Reticulum Contact Sites Accompanies LUHMES Differentiation
by Emad Norouzi Esfahani, Tomas Knedlik, Sang Hun Shin, Ana Paula Magalhães Rebelo, Agnese De Mario, Caterina Vianello, Luca Persano, Elena Rampazzo, Paolo Edomi, Camilla Bean, Dario Brunetti, Luca Scorrano, Samuele Greco, Marco Gerdol and Marta Giacomello
Biomolecules 2025, 15(1), 126; https://doi.org/10.3390/biom15010126 - 14 Jan 2025
Viewed by 1488
Abstract
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. [...] Read more.
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes. However, it is not clear whether and how the mitochondria–ER interactions differ between NPCs and their differentiated counterparts. Here we take advantage of the widely used NPC line LUHMES to provide hints on the mitochondrial dynamic trait changes that occur during the first stage of their maturation into dopaminergic-like neurons. We observed that the morphology of mitochondria, their interaction with the ER, and the expression of several mitochondria–ER contact site resident proteins change, which suggests the potential contribution of mitochondria dynamics to NPC differentiation. Further studies will be needed to explore in depth these changes, and their functional outcomes, which may be relevant to the scientific community focusing on embryonic neurogenesis and developmental neurotoxicity. Full article
(This article belongs to the Special Issue Mitochondria and Central Nervous System Disorders: 3rd Edition)
Show Figures

Figure 1

18 pages, 2224 KiB  
Communication
Distribution of the p66Shc Adaptor Protein Among Mitochondrial and Mitochondria—Associated Membranes Fractions in Normal and Oxidative Stress Conditions
by Magdalena Lebiedzinska-Arciszewska, Barbara Pakula, Massimo Bonora, Sonia Missiroli, Yaiza Potes, Patrycja Jakubek-Olszewska, Ines C. M. Simoes, Paolo Pinton and Mariusz R. Wieckowski
Int. J. Mol. Sci. 2024, 25(23), 12835; https://doi.org/10.3390/ijms252312835 - 29 Nov 2024
Cited by 2 | Viewed by 1440
Abstract
p66Shc is an adaptor protein and one of the cellular fate regulators since it modulates mitogenic signaling pathways, mitochondrial function, and reactive oxygen species (ROS) production. p66Shc is localized mostly in the cytosol and endoplasmic reticulum (ER); however, under oxidative stress, p66Shc is [...] Read more.
p66Shc is an adaptor protein and one of the cellular fate regulators since it modulates mitogenic signaling pathways, mitochondrial function, and reactive oxygen species (ROS) production. p66Shc is localized mostly in the cytosol and endoplasmic reticulum (ER); however, under oxidative stress, p66Shc is post-translationally modified and relocates to mitochondria. p66Shc was found in the intermembrane space, where it interacts with cytochrome c, contributing to the hydrogen peroxide generation by the mitochondrial respiratory chain. Our previous studies suggested that p66Shc is localized also in mitochondria-associated membranes (MAM). MAM fraction consists of mitochondria and mostly ER membranes. Contact sites between ER and mitochondria host proteins involved in multiple processes including calcium homeostasis, apoptosis, and autophagy regulation. Thus, p66Shc in MAM could participate in processes related to cell fate determination. Due to reports on various and conditional p66Shc intracellular localization, in the present paper, we describe the allocation of p66Shc pools in different subcellular compartments in mouse liver tissue and HepG2 cell culture. We provide additional evidence for p66Shc localization in MAM. In the present study, we use precisely purified subcellular fraction isolated by differential centrifugation-based protocol from control mouse liver tissue and HepG2 cells and from cells treated with hydrogen peroxide to promote mitochondrial p66Shc translocation. We performed controlled digestion of crude mitochondrial fraction, in which the degradation patterns of p66Shc and MAM fraction marker proteins were comparable. Moreover, we assessed the distribution of the individual ShcA isoforms (p46Shc, p52Shc, and p66Shc) in the subcellular fractions and their contribution to the total ShcA in control mice livers and HepG2 cells. In conclusion, we showed that a substantial pool of p66Shc protein resides in MAM in control conditions and after oxidative stress induction. Full article
(This article belongs to the Special Issue Mitochondrial Biology and Reactive Oxygen Species)
Show Figures

Figure 1

24 pages, 7912 KiB  
Article
Altered Endoplasmic Reticulum Integrity and Organelle Interactions in Living Cells Expressing INF2 Variants
by Quynh Thuy Huong Tran, Naoyuki Kondo, Hiroko Ueda, Yoshiyuki Matsuo and Hiroyasu Tsukaguchi
Int. J. Mol. Sci. 2024, 25(18), 9783; https://doi.org/10.3390/ijms25189783 - 10 Sep 2024
Cited by 3 | Viewed by 1989
Abstract
The cytoskeleton mediates fundamental cellular processes by organizing inter-organelle interactions. Pathogenic variants of inverted formin 2 (INF2) CAAX isoform, an actin assembly factor that is predominantly expressed in the endoplasmic reticulum (ER), are linked to focal segmental glomerulosclerosis (FSGS) and Charcot–Marie–Tooth (CMT) neuropathy. [...] Read more.
The cytoskeleton mediates fundamental cellular processes by organizing inter-organelle interactions. Pathogenic variants of inverted formin 2 (INF2) CAAX isoform, an actin assembly factor that is predominantly expressed in the endoplasmic reticulum (ER), are linked to focal segmental glomerulosclerosis (FSGS) and Charcot–Marie–Tooth (CMT) neuropathy. To investigate how pathogenic INF2 variants alter ER integrity, we used high-resolution live imaging of HeLa cells. Cells expressing wild-type (WT) INF2 showed a predominant tubular ER with perinuclear clustering. Cells expressing INF2 FSGS variants that cause mild and intermediate disease induced more sheet-like ER, a pattern similar to that seen for cells expressing WT-INF2 that were treated with actin and microtubule (MT) inhibitors. Dual CMT-FSGS INF2 variants led to more severe ER dysmorphism, with a diffuse, fragmented ER and coarse INF2 aggregates. Proper organization of both F-actin and MT was needed to modulate the tubule vs. sheet conformation balance, while MT arrays regulated spatial expansion of tubular ER in the cell periphery. Pathogenic INF2 variants also induced mitochondria fragmentation and dysregulated mitochondria distribution. Such mitochondrial abnormalities were more prominent for cells expressing CMT-FSGS compared to those with FSGS variants, indicating that the severity of the dysfunction is linked to the degree of cytoskeletal disorganization. Our observations suggest that pathogenic INF2 variants disrupt ER continuity by altering interactions between the ER and the cytoskeleton that in turn impairs inter-organelle communication, especially at ER–mitochondria contact sites. ER continuity defects may be a common disease mechanism involved in both peripheral neuropathy and glomerulopathy. Full article
Show Figures

Figure 1

26 pages, 1600 KiB  
Review
A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson’s Disease
by Peter A. Barbuti
Int. J. Mol. Sci. 2024, 25(12), 6525; https://doi.org/10.3390/ijms25126525 - 13 Jun 2024
Cited by 3 | Viewed by 2112
Abstract
Parkinson’s disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between [...] Read more.
Parkinson’s disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies. Full article
(This article belongs to the Special Issue The Structure and Function of Synuclein)
Show Figures

Figure 1

23 pages, 8935 KiB  
Article
Analysis of the Mouse Hepatic Peroxisome Proteome—Identification of Novel Protein Constituents Using a Semi-Quantitative SWATH-MS Approach
by Öznur Singin, Artur Astapenka, Victor Costina, Sandra Kühl, Nina Bonekamp, Oliver Drews and Markus Islinger
Cells 2024, 13(2), 176; https://doi.org/10.3390/cells13020176 - 17 Jan 2024
Cited by 5 | Viewed by 2486
Abstract
Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a [...] Read more.
Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a mitochondria- and a microsome-enriched prefraction, combining density-gradient centrifugation with a semi-quantitative SWATH-MS proteomics approach to unveil novel peroxisomal or peroxisome-associated proteins. In total, 1071 proteins were identified using MS and assessed in terms of their distribution in either high-density peroxisomal or low-density gradient fractions, containing the bulk of organelle material. Combining the data from both fractionation approaches allowed for the identification of specific protein profiles characteristic of mitochondria, the ER and peroxisomes. Among the proteins significantly enriched in the peroxisomal cluster were several novel peroxisomal candidates. Five of those were validated by colocalization in peroxisomes, using confocal microscopy. The peroxisomal import of HTATIP2 and PAFAH2, which contain a peroxisome-targeting sequence 1 (PTS1), could be confirmed by overexpression in HepG2 cells. The candidates SAR1B and PDCD6, which are known ER-exit-site proteins, did not directly colocalize with peroxisomes, but resided at ER sites, which frequently surrounded peroxisomes. Hence, both proteins might concentrate at presumably co-purified peroxisome-ER membrane contacts. Intriguingly, the fifth candidate, OCIA domain-containing protein 1, was previously described as decreasing mitochondrial network formation. In this work, we confirmed its peroxisomal localization and further observed a reduction in peroxisome numbers in response to OCIAD1 overexpression. Hence, OCIAD1 appears to be a novel protein, which has an impact on both mitochondrial and peroxisomal maintenance. Full article
Show Figures

Graphical abstract

20 pages, 4240 KiB  
Article
The Complex Effects of PKM2 and PKM2:IP3R Disruption on Intracellular Ca2+ Handling and Cellular Functions
by Fernanda O. Lemos, Ian de Ridder, Martin D. Bootman, Geert Bultynck and Jan B. Parys
Cells 2023, 12(21), 2527; https://doi.org/10.3390/cells12212527 - 26 Oct 2023
Cited by 2 | Viewed by 2230
Abstract
Pyruvate kinase M (PKM) 2 was described to interact with the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and suppress its activity. To further investigate the physiological importance of the PKM2:IP3R interaction, we developed and characterized HeLa PKM2 knockout [...] Read more.
Pyruvate kinase M (PKM) 2 was described to interact with the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and suppress its activity. To further investigate the physiological importance of the PKM2:IP3R interaction, we developed and characterized HeLa PKM2 knockout (KO) cells. In the HeLa PKM2 KO cells, the release of Ca2+ to the cytosol appears to be more sensitive to low agonist concentrations than in HeLa wild-type (WT) cells. However, upon an identical IP3-induced Ca2+ release, Ca2+ uptake in the mitochondria is decreased in HeLa PKM2 KO cells, which may be explained by the smaller number of contact sites between the ER and the mitochondria. Furthermore, in HeLa PKM2 KO cells, mitochondria are more numerous, though they are smaller and less branched and have a hyperpolarized membrane potential. TAT-D5SD, a cell-permeable peptide representing a sequence derived from IP3R1 that can disrupt the PKM2:IP3R interaction, induces Ca2+ release into the cytosol and Ca2+ uptake into mitochondria in both HeLa WT and PKM2 KO cells. Moreover, TAT-D5SD induced apoptosis in HeLa WT and PKM2 KO cells but not in HeLa cells completely devoid of IP3Rs. These results indicate that PKM2 separately regulates cytosolic and mitochondrial Ca2+ handling and that the cytotoxic effect of TAT-D5SD depends on IP3R activity but not on PKM2. However, the tyrosine kinase Lck, which also interacts with the D5SD sequence, is expressed neither in HeLa WT nor PKM2 KO cells, and we can also exclude a role for PKM1, which is upregulated in HeLa PKM2 KO cells, indicating that the TAT-D5SD peptide has a more complex mode of action than anticipated. Full article
Show Figures

Figure 1

22 pages, 7521 KiB  
Article
TRPV1 Channels Are New Players in the Reticulum–Mitochondria Ca2+ Coupling in a Rat Cardiomyoblast Cell Line
by Nolwenn Tessier, Mallory Ducrozet, Maya Dia, Sally Badawi, Christophe Chouabe, Claire Crola Da Silva, Michel Ovize, Gabriel Bidaux, Fabien Van Coppenolle and Sylvie Ducreux
Cells 2023, 12(18), 2322; https://doi.org/10.3390/cells12182322 - 20 Sep 2023
Cited by 8 | Viewed by 3271
Abstract
The Ca2+ release in microdomains formed by intercompartmental contacts, such as mitochondria-associated endoplasmic reticulum membranes (MAMs), encodes a signal that contributes to Ca2+ homeostasis and cell fate control. However, the composition and function of MAMs remain to be fully defined. Here, [...] Read more.
The Ca2+ release in microdomains formed by intercompartmental contacts, such as mitochondria-associated endoplasmic reticulum membranes (MAMs), encodes a signal that contributes to Ca2+ homeostasis and cell fate control. However, the composition and function of MAMs remain to be fully defined. Here, we focused on the transient receptor potential vanilloid 1 (TRPV1), a Ca2+-permeable ion channel and a polymodal nociceptor. We found TRPV1 channels in the reticular membrane, including some at MAMs, in a rat cardiomyoblast cell line (SV40-transformed H9c2) by Western blotting, immunostaining, cell fractionation, and proximity ligation assay. We used chemical and genetic probes to perform Ca2+ imaging in four cellular compartments: the endoplasmic reticulum (ER), cytoplasm, mitochondrial matrix, and mitochondrial surface. Our results showed that the ER Ca2+ released through TRPV1 channels is detected at the mitochondrial outer membrane and transferred to the mitochondria. Finally, we observed that prolonged TRPV1 modulation for 30 min alters the intracellular Ca2+ equilibrium and influences the MAM structure or the hypoxia/reoxygenation-induced cell death. Thus, our study provides the first evidence that TRPV1 channels contribute to MAM Ca2+ exchanges. Full article
Show Figures

Figure 1

22 pages, 2209 KiB  
Review
Role of Mitochondria–ER Contact Sites in Mitophagy
by Alina Rühmkorf and Angelika Bettina Harbauer
Biomolecules 2023, 13(8), 1198; https://doi.org/10.3390/biom13081198 - 31 Jul 2023
Cited by 11 | Viewed by 4875
Abstract
Mitochondria are often referred to as the “powerhouse” of the cell. However, this organelle has many more functions than simply satisfying the cells’ metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these [...] Read more.
Mitochondria are often referred to as the “powerhouse” of the cell. However, this organelle has many more functions than simply satisfying the cells’ metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria–ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria–ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson’s disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria–ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage. Full article
(This article belongs to the Special Issue Mitochondrial Quality Control in Aging and Neurodegeneration)
Show Figures

Figure 1

14 pages, 1645 KiB  
Article
Defects in Mitochondrial Functions Affect the Survival of Yeast Cells Treated with Non-Thermal Plasma
by Anna Strížová, Paulína Šmátralová, Petra Chovančíková, Zdenko Machala and Peter Polčic
Int. J. Mol. Sci. 2023, 24(11), 9391; https://doi.org/10.3390/ijms24119391 - 28 May 2023
Viewed by 1820
Abstract
Exposure of living cells to non-thermal plasma produced in various electrical discharges affects cell physiology and often results in cell death. Even though plasma-based techniques have started finding practical applications in biotechnology and medicine, the molecular mechanisms of interaction of cells with plasma [...] Read more.
Exposure of living cells to non-thermal plasma produced in various electrical discharges affects cell physiology and often results in cell death. Even though plasma-based techniques have started finding practical applications in biotechnology and medicine, the molecular mechanisms of interaction of cells with plasma remain poorly understood. In this study, the involvement of selected cellular components or pathways in plasma-induced cell killing was studied employing yeast deletion mutants. The changes in yeast sensitivity to plasma-activated water were observed in mutants with the defect in mitochondrial functions, including transport across the outer mitochondrial membrane (∆por1), cardiolipin biosynthesis (∆crd1, ∆pgs1), respiration (ρ0) and assumed signaling to the nucleus (∆mdl1, ∆yme1). Together these results indicate that mitochondria play an important role in plasma-activated water cell killing, both as the target of the damage and the participant in the damage signaling, which may lead to the induction of cell protection. On the other hand, our results show that neither mitochondria-ER contact sites, UPR, autophagy, nor proteasome play a major role in the protection of yeast cells from plasma-induced damage. Full article
(This article belongs to the Special Issue Stress Response Research: Yeast as Models)
Show Figures

Figure 1

24 pages, 2984 KiB  
Article
Partial Inhibition of Complex I Restores Mitochondrial Morphology and Mitochondria-ER Communication in Hippocampus of APP/PS1 Mice
by Jessica Panes, Thi Kim Oanh Nguyen, Huanyao Gao, Trace A. Christensen, Andrea Stojakovic, Sergey Trushin, Jeffrey L. Salisbury, Jorge Fuentealba and Eugenia Trushina
Cells 2023, 12(8), 1111; https://doi.org/10.3390/cells12081111 - 8 Apr 2023
Cited by 10 | Viewed by 4056
Abstract
Alzheimer’s disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aβ and pTau accumulation, improved synaptic and mitochondrial [...] Read more.
Alzheimer’s disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aβ and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aβ and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD. Full article
(This article belongs to the Special Issue Mitochondria at the Crossroad of Health and Disease)
Show Figures

Figure 1

18 pages, 1567 KiB  
Article
Acute ACAT1/SOAT1 Blockade Increases MAM Cholesterol and Strengthens ER-Mitochondria Connectivity
by Taylor C. Harned, Radu V. Stan, Ze Cao, Rajarshi Chakrabarti, Henry N. Higgs, Catherine C. Y. Chang and Ta Yuan Chang
Int. J. Mol. Sci. 2023, 24(6), 5525; https://doi.org/10.3390/ijms24065525 - 14 Mar 2023
Cited by 20 | Viewed by 4991
Abstract
Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer’s disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), [...] Read more.
Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer’s disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition. Full article
(This article belongs to the Special Issue The Twist and Turn of Lipids in Human Diseases)
Show Figures

Figure 1

11 pages, 1487 KiB  
Brief Report
Comparison among Neuroblastoma Stages Suggests the Involvement of Mitochondria in Tumor Progression
by Stefano Cagnin, Tomas Knedlik, Caterina Vianello, Ana Paula Magalhães Rebelo, Agnese De Mario and Marta Giacomello
Biomedicines 2023, 11(2), 596; https://doi.org/10.3390/biomedicines11020596 - 17 Feb 2023
Cited by 5 | Viewed by 2436
Abstract
Neuroblastoma (NB) is the most common extracranial tumor of early childhood and accounts for 15% of all pediatric cancer mortalities. However, the precise pathways and genes underlying its progression are unknown. Therefore, we performed a differential gene expression analysis of neuroblastoma stage 1 [...] Read more.
Neuroblastoma (NB) is the most common extracranial tumor of early childhood and accounts for 15% of all pediatric cancer mortalities. However, the precise pathways and genes underlying its progression are unknown. Therefore, we performed a differential gene expression analysis of neuroblastoma stage 1 and stage 4 + 4S to discover biological processes associated with NB progression. From this preliminary analysis, we found that NB samples (stage 4 + 4S) are characterized by altered expression of some proteins involved in mitochondria function and mitochondria–ER contact sites (MERCS). Although further analyses remain necessary, this review may provide new hints to better understand NB molecular etiopathogenesis, by suggesting that MERCS alterations could be involved in the progression of NB. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

19 pages, 4080 KiB  
Article
Proteomic Analysis of Retinal Mitochondria-Associated ER Membranes Identified Novel Proteins of Retinal Degeneration in Long-Term Diabetes
by Joshua J. Wang, Karen Sophia Park, Narayan Dhimal, Shichen Shen, Xixiang Tang, Jun Qu and Sarah X. Zhang
Cells 2022, 11(18), 2819; https://doi.org/10.3390/cells11182819 - 9 Sep 2022
Cited by 12 | Viewed by 3300
Abstract
The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) is the physical contact site between the ER and the mitochondria and plays a vital role in the regulation of calcium signaling, bioenergetics, and inflammation. Disturbances in these processes and dysregulation of the ER and mitochondrial [...] Read more.
The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) is the physical contact site between the ER and the mitochondria and plays a vital role in the regulation of calcium signaling, bioenergetics, and inflammation. Disturbances in these processes and dysregulation of the ER and mitochondrial homeostasis contribute to the pathogenesis of diabetic retinopathy (DR). However, few studies have examined the impact of diabetes on the retinal MAM and its implication in DR pathogenesis. In the present study, we investigated the proteomic changes in retinal MAM from Long Evans rats with streptozotocin-induced long-term Type 1 diabetes. Furthermore, we performed in-depth bioinformatic analysis to identify key MAM proteins and pathways that are potentially implicated in retinal inflammation, angiogenesis, and neurodegeneration. A total of 2664 unique proteins were quantified using IonStar proteomics-pipeline in rat retinal MAM, among which 179 proteins showed significant changes in diabetes. Functional annotation revealed that the 179 proteins are involved in important biological processes such as cell survival, inflammatory response, and cellular maintenance, as well as multiple disease-relevant signaling pathways, e.g., integrin signaling, leukocyte extravasation, PPAR, PTEN, and RhoGDI signaling. Our study provides comprehensive information on MAM protein changes in diabetic retinas, which is helpful for understanding the mechanisms of metabolic dysfunction and retinal cell injury in DR. Full article
Show Figures

Figure 1

Back to TopTop