Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = EAAT5 (SLC1A7)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2667 KiB  
Article
Decreased Expression of the EAAT5 Glutamate Transporter at Photoreceptor Synapses in Early, Pre-Clinical Experimental Autoimmune Encephalomyelitis, a Mouse Model of Multiple Sclerosis
by Ali El Samad, Julia Jaffal, Dalia R. Ibrahim, Karin Schwarz and Frank Schmitz
Biomedicines 2024, 12(11), 2545; https://doi.org/10.3390/biomedicines12112545 - 7 Nov 2024
Cited by 3 | Viewed by 1516
Abstract
Background: Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in [...] Read more.
Background: Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in disease pathogenesis. Methodology: In the present study, we analyzed with qualitative and quantitative immunofluorescence microscopy and Western blot analyses whether alterations in the EAAT5 (SLC1A7) glutamate transporter could be involved in the previously observed alterations in structure and function of glutamatergic photoreceptor ribbon synapses in the EAE mouse model of MS. EAAT5 is a presynaptic glutamate transporter located near the presynaptic release sites. Results: We found that EAAT5 was strongly reduced at the photoreceptor synapses of EAE retinas in comparison to the photoreceptor synapses of the respective control retinas as early as day 9 post-immunization. The Western blot analyses demonstrated a decreased EAAT5 expression in EAE retinas. Conclusions: Our data illustrate early alterations of the EAAT5 glutamate transporter in the early pre-clinical phase of EAE/MS and suggest an involvement of EAAT5 in the previously observed early synaptic changes at photoreceptor synapses. The precise mechanisms need to be elucidated by future investigations. Full article
(This article belongs to the Special Issue 10th Anniversary of Biomedicines—Advances in Multiple Sclerosis)
Show Figures

Figure 1

12 pages, 251 KiB  
Article
Identification of Polymorphisms in EAAT1 Glutamate Transporter Gene SLC1A3 Associated with Reduced Migraine Risk
by Cassie L. Albury, Heidi G. Sutherland, Alexis W. Y. Lam, Ngan K. Tran, Rod A. Lea, Larisa M. Haupt and Lyn R. Griffiths
Genes 2024, 15(6), 797; https://doi.org/10.3390/genes15060797 - 18 Jun 2024
Cited by 1 | Viewed by 1568
Abstract
Dysfunction in ion channels or processes involved in maintaining ionic homeostasis is thought to lower the threshold for cortical spreading depression (CSD), and plays a role in susceptibility to associated neurological disorders, including pathogenesis of a migraine. Rare pathogenic variants in specific ion [...] Read more.
Dysfunction in ion channels or processes involved in maintaining ionic homeostasis is thought to lower the threshold for cortical spreading depression (CSD), and plays a role in susceptibility to associated neurological disorders, including pathogenesis of a migraine. Rare pathogenic variants in specific ion channels have been implicated in monogenic migraine subtypes. In this study, we further examined the channelopathic nature of a migraine through the analysis of common genetic variants in three selected ion channel or transporter genes: SLC4A4, SLC1A3, and CHRNA4. Using the Agena MassARRAY platform, 28 single-nucleotide polymorphisms (SNPs) across the three candidate genes were genotyped in a case–control cohort comprised of 182 migraine cases and 179 matched controls. Initial results identified significant associations between migraine and rs3776578 (p = 0.04) and rs16903247 (p = 0.05) genotypes within the SLC1A3 gene, which encodes the EAAT1 glutamate transporter. These SNPs were subsequently genotyped in an independent cohort of 258 migraine cases and 290 controls using a high-resolution melt assay, and association testing supported the replication of initial findings—rs3776578 (p = 0.0041) and rs16903247 (p = 0.0127). The polymorphisms are in linkage disequilibrium and localise within a putative intronic enhancer region of SLC1A3. The minor alleles of both SNPs show a protective effect on migraine risk, which may be conferred via influencing the expression of SLC1A3. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
15 pages, 322 KiB  
Article
Association Study of the SLC1A2 (rs4354668), SLC6A9 (rs2486001), and SLC6A5 (rs2000959) Polymorphisms in Major Depressive Disorder
by Patryk Rodek, Małgorzata Kowalczyk, Jan Kowalski, Aleksander Owczarek, Piotr Choręza and Krzysztof Kucia
J. Clin. Med. 2022, 11(19), 5914; https://doi.org/10.3390/jcm11195914 - 7 Oct 2022
Cited by 2 | Viewed by 2046
Abstract
The membrane excitatory amino acid transporter 2 (EAAT2), encoded by SLC1A2, is responsible for the uptake and redistribution of synaptic glutamate. Glycine modulates excitatory neurotransmission. The clearance of synaptic glycine is performed by glycine transporters encoded by SLC6A9 and SLC6A5. Higher synaptic [...] Read more.
The membrane excitatory amino acid transporter 2 (EAAT2), encoded by SLC1A2, is responsible for the uptake and redistribution of synaptic glutamate. Glycine modulates excitatory neurotransmission. The clearance of synaptic glycine is performed by glycine transporters encoded by SLC6A9 and SLC6A5. Higher synaptic glycine and glutamate levels could enhance the activation of NMDA receptors and counteract the hypofunction of glutamate neurotransmission described in major depressive disorder (MDD). The aim of the study was to assess whether polymorphisms of SCL1A2 (rs4354668), SCL6A5 (rs2000959), and SCL6A9 (rs2486001) play a role in the development of MDD and its clinical picture in the Polish population. The study group consisted of 161 unrelated Caucasian patients with MDD and 462 healthy unrelated individuals for control. Polymorphisms were genotyped with PCR-RLFP assay. We observed that the frequency of genotype CC and allele C of the SLC1A2 polymorphism rs4354668 was twice as high in the MDD group as in control. Such differences were not detected in SLC6A5 and SLC6A9 polymorphisms. No statistically significant association of the studied SNPs (Single Nucleotide Polymorphisms) on clinical variables of the MDD was observed. The current study indicates an association of polymorphism rs4354668 in SCL1A2 with depression occurrence in the Polish population; however, further studies with larger samples should be performed to clarify these findings. Full article
(This article belongs to the Section Mental Health)
13 pages, 310 KiB  
Article
Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia
by Olga Yu. Fedorenko, Diana Z. Paderina, Elena G. Kornetova, Evgeniya G. Poltavskaya, Ivan V. Pozhidaev, Anastasiia A. Goncharova, Maxim B. Freidin, Anna V. Bocharova, Nikolay A. Bokhan, Anton J. M. Loonen and Svetlana A. Ivanova
Diagnostics 2022, 12(7), 1521; https://doi.org/10.3390/diagnostics12071521 - 22 Jun 2022
Cited by 3 | Viewed by 3197
Abstract
Background: Tardive dyskinesia (TD) is an extrapyramidal side effect of the long-term use of antipsychotics. In the present study, the role of glutamatergic system genes in the pathogenesis of total TD, as well as two phenotypic forms, orofacial TD and limb-truncal TD, was [...] Read more.
Background: Tardive dyskinesia (TD) is an extrapyramidal side effect of the long-term use of antipsychotics. In the present study, the role of glutamatergic system genes in the pathogenesis of total TD, as well as two phenotypic forms, orofacial TD and limb-truncal TD, was studied. Methods: A set of 46 SNPs of the glutamatergic system genes (GRIN2A, GRIN2B, GRIK4, GRM3, GRM7, GRM8, SLC1A2, SLC1A3, SLC17A7) was studied in a population of 704 Caucasian patients with schizophrenia. Genotyping was performed using the MassARRAY Analyzer 4 (Agena Bioscience™). Logistic regression analysis was performed to test for the association of TD with the SNPs while adjusting for confounders. Results: No statistically significant associations between the SNPs and TD were found after adjusting for multiple testing. Since three SNPs of the SLC1A2 gene demonstrated nominally significant associations, we carried out a haplotype analysis for these SNPs. This analysis identified a risk haplotype for TD comprising CAT alleles of the SLC1A2 gene SNPs rs1042113, rs10768121, and rs12361171. Nominally significant associations were identified for SLC1A3 rs2229894 and orofacial TD, as well as for GRIN2A rs7192557 and limb-truncal TD. Conclusions: Genes encoding for mGlu3, EAAT2, and EAAT1 may be involved in the development of TD in schizophrenia patients. Full article
(This article belongs to the Special Issue MicroRNA in Diagnosis and Prognosis)
17 pages, 3981 KiB  
Article
Dysfunction of EAAT3 Aggravates LPS-Induced Post-Operative Cognitive Dysfunction
by Xiao-Yan Wang, Wen-Gang Liu, Ai-Sheng Hou, Yu-Xiang Song, Yu-Long Ma, Xiao-Dong Wu, Jiang-Bei Cao and Wei-Dong Mi
Membranes 2022, 12(3), 317; https://doi.org/10.3390/membranes12030317 - 11 Mar 2022
Cited by 5 | Viewed by 3176
Abstract
Numerous results have revealed an association between inhibited function of excitatory amino acid transporter 3 (EAAT3) and several neurodegenerative diseases. This was also corroborated by our previous studies which showed that the EAAT3 function was intimately linked to learning and memory. With this [...] Read more.
Numerous results have revealed an association between inhibited function of excitatory amino acid transporter 3 (EAAT3) and several neurodegenerative diseases. This was also corroborated by our previous studies which showed that the EAAT3 function was intimately linked to learning and memory. With this premise, we examined the role of EAAT3 in post-operative cognitive dysfunction (POCD) and explored the potential benefit of riluzole in countering POCD in the present study. We first established a recombinant adeno-associated-viral (rAAV)-mediated shRNA to knockdown SLC1A1/EAAT3 expression in the hippocampus of adult male mice. The mice then received an intracerebroventricular microinjection of 2 μg lipopolysaccharide (LPS) to construct the POCD model. In addition, for old male mice, 4 mg/kg of riluzole was intraperitoneally injected for three consecutive days, with the last injection administered 2 h before the LPS microinjection. Cognitive function was assessed using the Morris water maze 24 h following the LPS microinjection. Animal behavioral tests, as well as pathological and biochemical assays, were performed to clarify the role of EAAT3 function in POCD and evaluate the effect of activating the EAAT3 function by riluzole. In the present study, we established a mouse model with hippocampal SLC1A1/EAAT3 knockdown and found that hippocampal SLC1A1/EAAT3 knockdown aggravated LPS-induced learning and memory deficits in adult male mice. Meanwhile, LPS significantly inhibited the expression of EAAT3 membrane protein and the phosphorylation level of GluA1 protein in the hippocampus of adult male mice. Moreover, riluzole pretreatment significantly increased the expression of hippocampal EAAT3 membrane protein and also ameliorated LPS-induced cognitive impairment in elderly male mice. Taken together, our results demonstrated that the dysfunction of EAAT3 is an important risk factor for POCD susceptibility and therefore, it may become a promising target for POCD treatment. Full article
Show Figures

Figure 1

12 pages, 1881 KiB  
Article
Functional and Kinetic Comparison of Alanine Cysteine Serine Transporters ASCT1 and ASCT2
by Jiali Wang, Yang Dong and Christof Grewer
Biomolecules 2022, 12(1), 113; https://doi.org/10.3390/biom12010113 - 11 Jan 2022
Cited by 11 | Viewed by 2840
Abstract
Neutral amino acid transporters ASCT1 and ASCT2 are two SLC1 (solute carrier 1) family subtypes, which are specific for neutral amino acids. The other members of the SLC1 family are acidic amino acid transporters (EAATs 1–5). While the functional similarities and differences between [...] Read more.
Neutral amino acid transporters ASCT1 and ASCT2 are two SLC1 (solute carrier 1) family subtypes, which are specific for neutral amino acids. The other members of the SLC1 family are acidic amino acid transporters (EAATs 1–5). While the functional similarities and differences between the EAATs have been well studied, less is known about how the subtypes ASCT1 and 2 differ in kinetics and function. Here, by performing comprehensive electrophysiological analysis, we identified similarities and differences between these subtypes, as well as novel functional properties, such as apparent substrate affinities of the inward-facing conformation (in the range of 70 μM for L-serine as the substrate). Key findings were: ASCT1 has a higher apparent affinity for Na+, as well as a larger [Na+] dependence of substrate affinity compared to ASCT2. However, the general sequential Na+/substrate binding mechanism with at least one Na+ binding first, followed by amino acid substrate, followed by at least one more Na+ ion, appears to be conserved between the two subtypes. In addition, the first Na+ binding step, presumably to the Na3 site, occurs with high apparent affinity (<1 mM) in both transporters. In addition, ASCT1 and 2 show different substrate selectivities, where ASCT1 does not respond to extracellular glutamine. Finally, in both transporters, we measured rapid, capacitive charge movements upon application and removal of amino acid, due to rearrangement of the translocation equilibrium. This charge movement decays rapidly, with a time constant of 4–5 ms and recovers with a time constant in the 15 ms range after substrate removal. This places a lower limit on the turnover rate of amino acid exchange by these two transporters of 60–80 s−1. Full article
(This article belongs to the Special Issue Recent Advances in Amino Acid Transporters)
Show Figures

Figure 1

25 pages, 7986 KiB  
Article
Anakinra Reduces Epileptogenesis, Provides Neuroprotection, and Attenuates Behavioral Impairments in Rats in the Lithium–Pilocarpine Model of Epilepsy
by Alexandra V. Dyomina, Olga E. Zubareva, Ilya V. Smolensky, Dmitry S. Vasilev, Maria V. Zakharova, Anna A. Kovalenko, Alexander P. Schwarz, Alexander M. Ischenko and Aleksey V. Zaitsev
Pharmaceuticals 2020, 13(11), 340; https://doi.org/10.3390/ph13110340 - 25 Oct 2020
Cited by 39 | Viewed by 4874
Abstract
Temporal lobe epilepsy is a widespread chronic disorder that manifests as spontaneous seizures and is often characterized by refractoriness to drug treatment. Temporal lobe epilepsy can be caused by a primary brain injury; therefore, the prevention of epileptogenesis after a primary event is [...] Read more.
Temporal lobe epilepsy is a widespread chronic disorder that manifests as spontaneous seizures and is often characterized by refractoriness to drug treatment. Temporal lobe epilepsy can be caused by a primary brain injury; therefore, the prevention of epileptogenesis after a primary event is considered one of the best treatment options. However, a preventive treatment for epilepsy still does not exist. Neuroinflammation is directly involved in epileptogenesis and neurodegeneration, leading to the epileptic condition and cognitive decline. In the present study, we aimed to clarify the effect of treatment with a recombinant form of the Interleukin-1 receptor antagonist (anakinra) on epileptogenesis and behavioral impairments in rats using the lithium–pilocarpine model. We found that anakinra administration during the latent phase of the model significantly suppressed the duration and frequency of spontaneous recurrent seizures in the chronic phase. Moreover, anakinra administration prevented some behavioral impairments, including motor hyperactivity and disturbances in social interactions, during both the latent and chronic periods. Histological analysis revealed that anakinra administration decreased neuronal loss in the CA1 and CA3 areas of the hippocampus but did not prevent astro- and microgliosis. The treatment increased the expression level of the solute carrier family 1 member 2 gene (Slc1a2, encoding excitatory amino acid transporter 2 (EAAT2)) in the hippocampus, potentially leading to a neuroprotective effect. However, the increased gene expression of proinflammatory cytokine genes (Interleukin-1β (Il1b) and tumor necrosis factor α (Tnfa)) and astroglial marker genes (glial fibrillary acidic protein (Gfap) and inositol 1,4,5-trisphosphate receptor type 2 (Itpr2)) in experimental rats was not affected by anakinra treatment. Thus, our data demonstrate that the administration of anakinra during epileptogenesis has some beneficial disease-modifying effects. Full article
(This article belongs to the Special Issue Epilepsy and Neurodegeneration: Current Therapeutic Implications 2021)
Show Figures

Figure 1

16 pages, 1778 KiB  
Article
Ethanol (E) Impairs Fetal Brain GSH Homeostasis by Inhibiting Excitatory Amino-Acid Carrier 1 (EAAC1)-Mediated Cysteine Transport
by Dhyanesh Patel, Lenin Mahimainathan, Madhusudhanan Narasimhan, Marylatha Rathinam and George Henderson
Int. J. Mol. Sci. 2017, 18(12), 2596; https://doi.org/10.3390/ijms18122596 - 5 Dec 2017
Cited by 4 | Viewed by 4131
Abstract
Central among the fetotoxic responses to in utero ethanol (E) exposure is redox-shift related glutathione (GSH) loss and apoptosis. Previously, we reported that despite an E-generated Nrf2 upregulation, fetal neurons still succumb. In this study, we investigate if the compromised GSH results from [...] Read more.
Central among the fetotoxic responses to in utero ethanol (E) exposure is redox-shift related glutathione (GSH) loss and apoptosis. Previously, we reported that despite an E-generated Nrf2 upregulation, fetal neurons still succumb. In this study, we investigate if the compromised GSH results from an impaired inward transport of cysteine (Cys), a precursor of GSH in association with dysregulated excitatory amino acid carrier1 (EAAC1), a cysteine transporter. In utero binge model involves administration of isocaloric dextrose or 20% E (3.5 g/kg)/ by gavage at 12 h intervals to pregnant Sprague Dawley (SD) rats, starting gestation day (gd) 17 with a final dose on gd19, 2 h prior to sacrifice. Primary cerebral cortical neurons (PCNs) from embryonic day 16–17 fetal SD rats were the in vitro model. E reduced both PCN and cerebral cortical GSH and Cys up to 50% and the abridged GSH could be blocked by administration of N-acetylcysteine. E reduced EAAC1 protein expression in utero and in PCNs (p < 0.05). This was accompanied by a 60–70% decrease in neuron surface expression of EAAC1 along with significant reductions of EAAC1/Slc1a1 mRNA (p < 0.05). In PCNs, EAAC1 knockdown significantly decreased GSH but not oxidized glutathione (GSSG) illustrating that while not the sole provider of Cys, EAAC1 plays an important role in neuron GSH homeostasis. These studies strongly support the concept that in both E exposed intact fetal brain and cultured PCNs a mechanism underlying E impairment of GSH homeostasis is reduction of import of external Cys which is mediated by perturbations of EAAC1 expression/function. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop