Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Doushantuo formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1913 KB  
Article
Fractal Characteristics and Pore Structures of Shales from the Doushantuo Formation, Yichang Area, South China
by Fulin Meng, Qiyang Zhang, Taifei Wu, Eping Song, Yan Li, Yi Sun and Xiufan Liu
Fractal Fract. 2025, 9(12), 774; https://doi.org/10.3390/fractalfract9120774 - 27 Nov 2025
Viewed by 401
Abstract
Low-pressure N2 adsorption experiments were conducted on 20 samples from the Doushantuo Formation in the Yichang area to quantitatively characterize their pore structures and fractal properties. The samples are mainly composed of quartz, dolomite, and clay minerals, with minor amounts of feldspar, [...] Read more.
Low-pressure N2 adsorption experiments were conducted on 20 samples from the Doushantuo Formation in the Yichang area to quantitatively characterize their pore structures and fractal properties. The samples are mainly composed of quartz, dolomite, and clay minerals, with minor amounts of feldspar, calcite, and pyrite. The N2 adsorption–desorption isotherms display typical type IV characteristics with a pronounced hysteresis loop, indicating that mesopores are dominant. The specific surface areas range from 3.78 to 11.49 m2/g, and the total pore volumes range from 0.0039 to 0.0169 mL/g, with mesopores contributing most of the total pore volume. Fractal analysis based on the FHH model reveals two distinct fractal dimensions (Df): Df1 = 2.5–2.9 for small pores and Df2 = 2.0–2.3 for large pores. The fractal dimensions are negatively correlated with TOC, quartz, and carbonate contents but positively correlated with clay and pyrite contents. Higher organic matter content tends to produce relatively smooth organic pores, reducing pore heterogeneity, whereas higher clay content increases surface roughness and structural complexity. Overall, the heterogeneity of pore structures in the Doushantuo Formation shales is primarily controlled by mineral composition and organic matter content. These results provide new insights into the pore characteristics and storage potential of Ediacaran marine shales. Full article
Show Figures

Figure 1

23 pages, 13661 KB  
Review
Ultra-Deep Oil and Gas Geological Characteristics and Exploration Potential in the Sichuan Basin
by Gang Zhou, Zili Zhang, Zehao Yan, Qi Li, Hehe Chen and Bingjie Du
Appl. Sci. 2025, 15(21), 11380; https://doi.org/10.3390/app152111380 - 24 Oct 2025
Viewed by 1044
Abstract
Judging from the current global exploration trend, ultra-deep layers have become the main battlefield for energy exploration. China has made great progress in the ultra-deep field in recent decades, with the Tarim Basin and Sichuan Basin as the focus of exploration. The Sichuan [...] Read more.
Judging from the current global exploration trend, ultra-deep layers have become the main battlefield for energy exploration. China has made great progress in the ultra-deep field in recent decades, with the Tarim Basin and Sichuan Basin as the focus of exploration. The Sichuan Basin is a large superimposed gas-bearing basin that has experienced multiple tectonic movements and has developed multiple sets of reservoir–caprock combinations vertically. Notably, the multi-stage platform margin belt-type reservoirs of the Sinian–Lower Paleozoic exhibit inherited and superimposed development. Source rocks from the Qiongzhusi, Doushantuo, and Maidiping formations are located in close proximity to reservoirs, creating a complex hydrocarbon supply system, resulting in vertical and lateral migration paths. The structural faults connect the source and reservoir, and the source–reservoir–caprock combination is complete, with huge exploration potential. At the same time, the ultra-deep carbonate rock structure in the basin is weakly deformed, the ancient closures are well preserved, and the ancient oil reservoirs are cracked into gas reservoirs in situ, with little loss, which is conducive to the large-scale accumulation of natural gas. Since the Nvji well produced 18,500 cubic meters of gas per day in 1979, the study of ultra-deep layers in the Sichuan Basin has begun. Subsequently, further achievements have been made in the Guanji, Jiulongshan, Longgang, Shuangyushi, Wutan and Penglai gas fields. Since 2000, two trillion cubic meters of exploration areas have been discovered, with huge exploration potential, which is an important area for increasing production by trillion cubic meters in the future. Faced with the ultra-deep high-temperature and high-pressure geological environment and the complex geological conditions formed by multi-stage superimposed tectonic movements, how do we understand the special geological environment of ultra-deep layers? What geological processes have the generation, migration and enrichment of ultra-deep hydrocarbons experienced? What are the laws of distribution of ultra-deep oil and gas reservoirs? Based on the major achievements and important discoveries made in ultra-deep oil and gas exploration in recent years, this paper discusses the formation and enrichment status of ultra-deep oil and gas reservoirs in the Sichuan Basin from the perspective of basin structure, source rocks, reservoirs, caprocks, closures and preservation conditions, and provides support for the optimization of favorable exploration areas in the future. Full article
Show Figures

Figure 1

26 pages, 13949 KB  
Article
Mechanisms of Uranium and Thorium Accumulation in the Lower Ediacaran Marine Sediments from the Upper Yangtze Platform, China: Implications for Helium Exploration
by Yi Zou, Qingyong Luo, Huayao Zou, Jianfa Chen, Wenming Ji, Jin Wu, Tao Du, Xintong Liu, Zilong Fang, Wenxin Hu, Ye Zhang and Jinqi Qiao
J. Mar. Sci. Eng. 2025, 13(3), 413; https://doi.org/10.3390/jmse13030413 - 23 Feb 2025
Cited by 1 | Viewed by 3110
Abstract
The ocean is a significant global reservoir of uranium (U) and thorium (Th). These elements can be incorporated into marine sediments through processes involving organic matter (OM), redox conditions, terrigenous inputs, and mineral interactions. Helium generated through the radioactive decay of U and [...] Read more.
The ocean is a significant global reservoir of uranium (U) and thorium (Th). These elements can be incorporated into marine sediments through processes involving organic matter (OM), redox conditions, terrigenous inputs, and mineral interactions. Helium generated through the radioactive decay of U and Th within geological formations represents a critical potential resource. Marine black shales, which are rich in U and Th, are widespread in the Ediacaran Doushantuo Formation of the Upper Yangtze Platform, making them a key target for helium exploration. However, there is limited research on the mechanisms behind U and Th accumulation in these shales. This study focuses on shales from the Doushantuo Formation in Chongqing, China, aiming to explore the mechanisms of U and Th accumulation and assess the potential for helium generation, and argillaceous dolomites are included for comparative analysis. The results show that the average U and Th content in the black shales (17.58 and 9.78 ppm, respectively) is higher than that of argillaceous dolomites (3.52 and 2.75 ppm, respectively). Uranium mainly comes from authigenic precipitation and hydrothermal inputs, while thorium is primarily sourced from terrigenous and hydrothermal inputs. The semi-humid climate in the provenance area facilitated parent rock weathering, with atmospheric precipitation and river systems transporting U and Th to the ocean. However, excessive terrigenous input can dilute the U and Th content in the sediments. In the shales, uranium is primarily adsorbed and/or complexed by organic matter (OM), with the anoxic–euxinic sedimentary environment and high OM content (TOC = 0.06–34.58 wt.%, r = 0.95) promoting U accumulation. Thorium accumulation is largely controlled by adsorption onto clay minerals. The total amount of helium generated from the Doushantuo shales is estimated to be 7.20 × 1010 m3. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

26 pages, 12357 KB  
Article
Zircon U-Pb and Fission-Track Chronology of the Kaiyang Phosphate Deposit in the Yangtze Block: Implications for the Rodinia Supercontinent Splitting and Subsequent Thermal Events
by Yina Song, Tianqi Li, Jiayi Zhou, Debin Zhu and Lingling Xiao
Minerals 2024, 14(6), 585; https://doi.org/10.3390/min14060585 - 31 May 2024
Viewed by 1469
Abstract
The Kaiyang phosphate mining area in Guizhou, which is located in the central–southern part of the Yangtze Block, hosts one of China’s more significant phosphate-enriched strata within the Doushantuo Formation. This formation is essential for phosphate mining and also preserves multiple magmatic events, [...] Read more.
The Kaiyang phosphate mining area in Guizhou, which is located in the central–southern part of the Yangtze Block, hosts one of China’s more significant phosphate-enriched strata within the Doushantuo Formation. This formation is essential for phosphate mining and also preserves multiple magmatic events, which are closely linked to the assembly and breakup of the Rodinia supercontinent. Our comprehensive studies in petrology, geochemistry, zircon U-Pb geochronology, and fission-track dating reveal that the primary ore mineral in phosphorite is collophane, which is accompanied by dolomite, quartz, pyrite, and zircon. The majority of detrital zircons in the phosphorite, as well as the overlying dolostone and underlying sandstone, are of magmatic origin, with a record of multiple stages of magmatic ages. Among these, the older age groups of ~2500 Ma and ~2000–1800 Ma represent the ancient crystalline basement of the Yangtze Block from the Paleoproterozoic era. The three main age peaks at ~880 Ma, ~820 Ma, and ~780 Ma indicate that the magmatic event at ~880 Ma was related to the assembly of the Rodinia supercontinent during the Grenvillian period. The most prominent age peak at ~820 Ma marks a critical time point for the transition from assembly to the breakup of the Rodinia supercontinent, with the Yangtze Block’s response to the supercontinent breakup events lasting at least until ~780 Ma. The youngest group of zircon ages from the phosphorite (~594 Ma), and the underlying sandstone (~529 Ma) establishes the minimum age for the phosphorite formation, indicating that the Doushantuo phosphorite layer in the Kaiyang area was formed after 594 Ma, i.e., even later than 529 Ma. The zircon fission-track ages in the three rock types of the phosphorite-bearing rocks can be divided into three groups: 501–489 Ma, ~366 Ma, and 53–39 Ma. All of these groups are presumed to be associated with the tectonic uplift events that follow mineralization. The first two age groups correspond to the two major tectonic uplift events during the Caledonian period, which resulted in the formation of the Qianzhong Uplift. The ages of 53–39 Ma are related to the late uplift of the Himalayan orogeny, and they represent its response in the Kaiyang area of Guizhou. Full article
(This article belongs to the Special Issue Geochemistry and Metallogenesis of REE-Rich Phosphorite Deposits)
Show Figures

Figure 1

13 pages, 3249 KB  
Article
Generation Time and Accumulation of Lower Paleozoic Petroleum in Sichuan and Tarim Basins Determined by Re–Os Isotopic Dating
by Jie Wang, Liangbang Ma, Cheng Tao, Wenhui Liu and Qingwei Dong
Processes 2023, 11(5), 1472; https://doi.org/10.3390/pr11051472 - 12 May 2023
Cited by 1 | Viewed by 2141
Abstract
With the targets of petroleum exploration transferred to the deep and ancient strata, abundant oil and gas resources have been found in Lower Paleozoic and older strata in central and western China. Due to complex evolutionary processes including multiple episodes of hydrocarbon accumulation [...] Read more.
With the targets of petroleum exploration transferred to the deep and ancient strata, abundant oil and gas resources have been found in Lower Paleozoic and older strata in central and western China. Due to complex evolutionary processes including multiple episodes of hydrocarbon accumulation and ubiquitously accompanied by secondary alterations, significant uncertainties remain concerning the generation time and accumulation processes of these revealed petroleum sources. In this paper, relative pure Re and Os elements existing in the asphaltene fractions of Lower Cambrian solid bitumen collected from the Guangyuan area, western Sichuan Basin, SW China and Middle–Lower Ordovician heavy oils in the Aiding area of the Tahe oilfield in the Tarim Basin, NW China were successfully obtained by sample pretreatments, and Re–Os isotopic analysis was subsequently carried out for the dating of these. The Re–Os isotopic composition indicates a generation time of Guangyuan bitumen to between 572 Ma and 559 Ma, corresponding to the late Sinian period of the Neoproterozoic era. By the means of Re–Os isochron aging, initial 187Os/188Os ratios, and carbon isotopic compositions, the Lower Cambrian bitumen is supposed to originate from source rocks of the Doushantuo Formation in the Sinian strata and subsequently migrated into the reservoirs of the Dengying Formation. This previously reserved petroleum was transformed into its present bitumen state by the destruction of reservoirs caused by tectonic uplift. The Re–Os dating results of Middle–Lower Ordovician heavy oil of Tarim Basin suggest that it was formed between 450 Ma to 436 Ma, corresponding to the Late Ordovician–Early Silurian system, and the generated petroleum likely migrate into the Middle–Lower Ordovician karst reservoirs to form early oil reservoirs. With tectonic uplift, these oil reservoirs were degraded and reformed to the heavy-oil reservoirs of today. Full article
Show Figures

Figure 1

14 pages, 4996 KB  
Article
Study on the Microstructure Evolution and Strength Damage Mechanism of Dolomite under Dissolution Condition
by Wenlian Liu, Pengen Liu, Hanhua Xu, Bocheng Gong and Feng Ji
Sustainability 2022, 14(18), 11447; https://doi.org/10.3390/su141811447 - 13 Sep 2022
Cited by 4 | Viewed by 2127
Abstract
Dolomite is a common type of natural soluble rock. The strength of rock decreases under the action of corrosion, which has a significant impact on the self-stability and long-term safety of the tunnel surrounding the rock. To reveal the microscopic structure evolution and [...] Read more.
Dolomite is a common type of natural soluble rock. The strength of rock decreases under the action of corrosion, which has a significant impact on the self-stability and long-term safety of the tunnel surrounding the rock. To reveal the microscopic structure evolution and strength-damage law of carbonate rock caused by chemical corrosion, a series of tests such as rock chemical corrosion test, rock uniaxial compression test and electron microscope scanning test are conducted at different pH values on the dolomite of the Doushantuo Formation. The rock dissolution at different pH values exhibits four typical stages: the initial dissolution stage, secondary dissolution acceleration stage, stable dissolution rate stage and dissolution attenuation stage. During the dissolution process, the initial dissolution rate is 25.91 times that of the stable stage, and the maximum strength attenuation is 76.2% after 21 days of dissolution. For macroscopic failure, the rock is developed from 1 to 2 external fractures to multiple internal and external fractures and penetrated, and the specimen transforms from brittle to flexible. For microstructure, the sample exhibits corrosion characteristics along the joint surface, intensified corrosion at the edge, etc. The porosity increase rate is 0.6%/d; however, the length–width ratio of the pores is maintained at 1.7–1.85, indicating that the development rate of pores in different directions is similar. The results of this study have enriched the study of the dolomite dissolution mechanism and, in addition, have important reference value for the stability evaluation of tunnel surrounding rock in karst environments. Full article
(This article belongs to the Special Issue Slope Stability Analysis and Landslide Disaster Prevention)
Show Figures

Figure 1

30 pages, 15961 KB  
Article
Chemically Oscillating Reactions during the Diagenetic Formation of Ediacaran Siliceous and Carbonate Botryoids
by Dominic Papineau, Jiayu Yin, Kevin G. Devine, Deng Liu and Zhenbing She
Minerals 2021, 11(10), 1060; https://doi.org/10.3390/min11101060 - 28 Sep 2021
Cited by 21 | Viewed by 4465
Abstract
Chemically oscillating reactions are abiotic reactions that produce characteristic, periodic patterns during the oxidation of carboxylic acids. They have been proposed to occur during the early diagenesis of sediments that contain organic matter and to partly explain the patterns of some enigmatic spheroids [...] Read more.
Chemically oscillating reactions are abiotic reactions that produce characteristic, periodic patterns during the oxidation of carboxylic acids. They have been proposed to occur during the early diagenesis of sediments that contain organic matter and to partly explain the patterns of some enigmatic spheroids in malachite, phosphorite, jasper chert, and stromatolitic chert from the rock record. In this work, circularly concentric self-similar patterns are shown to form in new chemically oscillating reaction experiments with variable mixtures of carboxylic acids and colloidal silica. This is carried out to best simulate in vitro the diagenetic formation of botryoidal quartz and carbonate in two Ediacaran-age geological formations deposited after the Marinoan–Nantuo snowball Earth event in South China. Experiments performed with alkaline colloidal silica (pH of 12) show that this compound directly participates in pattern formation, whereas those with humic acid particles did not. These experiments are particularly noteworthy since they show that pattern formation is not inhibited by strong pH gradients, since the classical Belousov–Zhabotinsky reaction occurs in solution with a pH around 2. Our documentation of hundreds of classical Belousov–Zhabotinsky experiments yields a number of self-similar patterns akin to those in concretionary structures after the Marinoan–Nantuo snowball Earth event. Morphological, compositional, and size dimensional comparisons are thus established between patterns from these experiments and in botryoidal quartz and carbonate from the Doushantuo and Denying formations. Selected specimens exhibit circularly concentric layers and disseminations of organic matter in quartz and carbonate, which also occurs in association with sub-micron-size pyrite and sub-millimetre iron oxides within these patterns. X-ray absorption near edge structure (XANES) analyses of organic matter extracted from dolomite concretions in slightly younger, early Cambrian Niutitang Formation reveal the presence of carboxylic and N-bearing molecular functional groups. Such mineral assemblages, patterns, and compositions collectively suggest that diagenetic redox reactions take place during the abiotic decay of biomass, and that they involve Fe, sulphate, and organic matter, similarly to the pattern-forming experiments. It is concluded that chemically oscillating reactions are at least partly responsible for the formation of diagenetic siliceous spheroids and concretionary carbonate, which can relate to various other persistent problems in Earth and planetary sciences. Full article
(This article belongs to the Special Issue The Mineralogy of the Siliceous Concretions)
Show Figures

Graphical abstract

Back to TopTop