Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Domoic acid neurotoxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2572 KiB  
Review
Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors
by Kuan-Kuan Yuan, Hong-Ye Li and Wei-Dong Yang
Mar. Drugs 2024, 22(11), 510; https://doi.org/10.3390/md22110510 - 10 Nov 2024
Cited by 6 | Viewed by 3439
Abstract
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning [...] Read more.
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning (CP). Despite being caused by exposure to various toxins or toxin analogs, these clinical syndromes share numerous similarities. Humans are exposed to these toxins mainly through the consumption of fish and shellfish, which serve as the main biological vectors. However, the risk of human diseases linked to toxigenic HABs is on the rise, corresponding to a dramatic increase in the occurrence, frequency, and intensity of toxigenic HABs in coastal regions worldwide. Although a growing body of studies have focused on the toxicological assessment of HAB-related species and their toxins on aquatic organisms, the organization of this information is lacking. Consequently, a comprehensive review of the adverse effects of HAB-associated species and their toxins on those organisms could deepen our understanding of the mechanisms behind their toxic effects, which is crucial to minimizing the risks of toxigenic HABs to human and public health. To this end, this paper summarizes the effects of the five most common HAB toxins on fish, shellfish, and humans and discusses the possible mechanisms. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

15 pages, 3070 KiB  
Article
Age and Sex as Determinants of Acute Domoic Acid Toxicity in a Mouse Model
by Alicia M. Hendrix, Kathi A. Lefebvre, Emily K. Bowers, Rudolph Stuppard, Thomas Burbacher and David J. Marcinek
Toxins 2023, 15(4), 259; https://doi.org/10.3390/toxins15040259 - 1 Apr 2023
Cited by 5 | Viewed by 2243
Abstract
The excitatory neurotoxin domoic acid (DA) consistently contaminates food webs in coastal regions around the world. Acute exposure to the toxin causes Amnesic Shellfish Poisoning, a potentially lethal syndrome of gastrointestinal- and seizure-related outcomes. Both advanced age and male sex have been suggested [...] Read more.
The excitatory neurotoxin domoic acid (DA) consistently contaminates food webs in coastal regions around the world. Acute exposure to the toxin causes Amnesic Shellfish Poisoning, a potentially lethal syndrome of gastrointestinal- and seizure-related outcomes. Both advanced age and male sex have been suggested to contribute to interindividual DA susceptibility. To test this, we administered DA doses between 0.5 and 2.5 mg/kg body weight to female and male C57Bl/6 mice at adult (7–9-month-old) and aged (25–28-month-old) life stages and observed seizure-related activity for 90 min, at which point we euthanized the mice and collected serum, cortical, and kidney samples. We observed severe clonic–tonic convulsions in some aged individuals, but not in younger adults. We also saw an association between advanced age and the incidence of a moderately severe seizure-related outcome, hindlimb tremors, and between advanced age and overall symptom severity and persistence. Surprisingly, we additionally report that female mice, particularly aged female mice, demonstrated more severe neurotoxic symptoms following acute exposure to DA than males. Both age and sex patterns were reflected in tissue DA concentrations as well: aged mice and females had generally higher concentrations of DA in their tissues at 90 min post-exposure. This study contributes to the body of work that can inform intelligent, evidence-based public health protections for communities threatened by more frequent and extensive DA-producing algal blooms. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

17 pages, 831 KiB  
Review
Progresses of the Influencing Factors and Detection Methods of Domoic Acid
by Aoao Yang, Haiguang Zhang, Yu Yang and Zhaoyu Jiang
Processes 2023, 11(2), 592; https://doi.org/10.3390/pr11020592 - 15 Feb 2023
Cited by 2 | Viewed by 3379
Abstract
Domoic acid (DA) is a neurotoxin mainly produced by Pseudo-nitzschia diatom, which belongs to the genera Rhomboida. It can combine with the receptors of glutamate of neurotransmitters, then affecting the normal nerve signal transmission of the organism and causing nervous system disorders. [...] Read more.
Domoic acid (DA) is a neurotoxin mainly produced by Pseudo-nitzschia diatom, which belongs to the genera Rhomboida. It can combine with the receptors of glutamate of neurotransmitters, then affecting the normal nerve signal transmission of the organism and causing nervous system disorders. However, as a natural marine drug, DA can also be used for pest prevention and control. Although the distribution of DA in the world has already been reported in the previous reviews, the time and location of its first discovery and the specific information are not complete. Therefore, the review systematically summarizes the first reported situation of DA in various countries (including species, discovery time, and collection location). Furthermore, we update and analyze the factors affecting DA production, including phytoplankton species, growth stages, bacteria, nutrient availability, trace metals, and so on. These factors may indirectly affect the growth environment or directly affect the physiological activities of the cells, then affect the production of DA. Given that DA is widely distributed in the environment, we summarize the main technical methods for the determination of DA, such as bioassay, high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent assay (ELISA), biosensor, and so on, as well as the advantages and disadvantages of each method used so far, which adds more new knowledge in the literature about DA until now. Finally, the DA research forecast and its industrial applications were prospected to prevent its harm and fully explore its potential value. Full article
Show Figures

Figure 1

25 pages, 20446 KiB  
Article
Detecting Neurodevelopmental Toxicity of Domoic Acid and Ochratoxin A Using Rat Fetal Neural Stem Cells
by Santokh Gill and V. M. Ruvin Kumara
Mar. Drugs 2019, 17(10), 566; https://doi.org/10.3390/md17100566 - 4 Oct 2019
Cited by 10 | Viewed by 4468
Abstract
Currently, animal experiments in rodents are the gold standard for developmental neurotoxicity (DNT) investigations; however, testing guidelines for these experiments are insufficient in terms of animal use, time, and costs. Thus, alternative reliable approaches are needed for predicting DNT. We chose rat neural [...] Read more.
Currently, animal experiments in rodents are the gold standard for developmental neurotoxicity (DNT) investigations; however, testing guidelines for these experiments are insufficient in terms of animal use, time, and costs. Thus, alternative reliable approaches are needed for predicting DNT. We chose rat neural stem cells (rNSC) as a model system, and used a well-known neurotoxin, domoic acid (DA), as a model test chemical to validate the assay. This assay was used to investigate the potential neurotoxic effects of Ochratoxin A (OTA), of which the main target organ is the kidney. However, limited information is available regarding its neurotoxic effects. The effects of DA and OTA on the cytotoxicity and on the degree of differentiation of rat rNSC into astrocytes, neurons, and oligodendrocytes were monitored using cell-specific immunofluorescence staining for undifferentiated rNSC (nestin), neurospheres (nestin and A2B5), neurons (MAP2 clone M13, MAP2 clone AP18, and Doublecortin), astrocytes (GFAP), and oligodendrocytes (A2B5 and mGalc). In the absence of any chemical exposure, approximately 46% of rNSC differentiated into astrocytes and neurons, while 40% of the rNSC differentiated into oligodendrocytes. Both non-cytotoxic and cytotoxic concentrations of DA and OTA reduced the differentiation of rNSC into astrocytes, neurons, and oligodendrocytes. Furthermore, a non-cytotoxic nanomolar (0.05 µM) concentration of DA and 0.2 µM of OTA reduced the percentage differentiation of rNSC into astrocytes and neurons. Morphometric analysis showed that the highest concentration (10 μM) of DA reduced axonal length. These indicate that low, non-cytotoxic concentrations of DA and OTA can interfere with the differentiation of rNSC. Full article
(This article belongs to the Special Issue Genetics of Marine Organisms Associated with Human Health)
Show Figures

Figure 1

15 pages, 3048 KiB  
Article
Discovery of a Potential Human Serum Biomarker for Chronic Seafood Toxin Exposure Using an SPR Biosensor
by Kathi A. Lefebvre, Betsy Jean Yakes, Elizabeth Frame, Preston Kendrick, Sara Shum, Nina Isoherranen, Bridget E. Ferriss, Alison Robertson, Alicia Hendrix, David J. Marcinek and Lynn Grattan
Toxins 2019, 11(5), 293; https://doi.org/10.3390/toxins11050293 - 23 May 2019
Cited by 12 | Viewed by 5296
Abstract
Domoic acid (DA)-producing harmful algal blooms (HABs) have been present at unprecedented geographic extent and duration in recent years causing an increase in contamination of seafood by this common environmental neurotoxin. The toxin is responsible for the neurotoxic illness, amnesic shellfish poisoning (ASP), [...] Read more.
Domoic acid (DA)-producing harmful algal blooms (HABs) have been present at unprecedented geographic extent and duration in recent years causing an increase in contamination of seafood by this common environmental neurotoxin. The toxin is responsible for the neurotoxic illness, amnesic shellfish poisoning (ASP), that is characterized by gastro-intestinal distress, seizures, memory loss, and death. Established seafood safety regulatory limits of 20 μg DA/g shellfish have been relatively successful at protecting human seafood consumers from short-term high-level exposures and episodes of acute ASP. Significant concerns, however, remain regarding the potential impact of repetitive low-level or chronic DA exposure for which there are no protections. Here, we report the novel discovery of a DA-specific antibody in the serum of chronically-exposed tribal shellfish harvesters from a region where DA is commonly detected at low levels in razor clams year-round. The toxin was also detected in tribal shellfish consumers’ urine samples confirming systemic DA exposure via consumption of legally-harvested razor clams. The presence of a DA-specific antibody in the serum of human shellfish consumers confirms long-term chronic DA exposure and may be useful as a diagnostic biomarker in a clinical setting. Adverse effects of chronic low-level DA exposure have been previously documented in laboratory animal studies and tribal razor clam consumers, underscoring the potential clinical impact of such a diagnostic biomarker for protecting human health. The discovery of this type of antibody response to chronic DA exposure has broader implications for other environmental neurotoxins of concern. Full article
(This article belongs to the Special Issue Marine Biotoxins and Seafood Poisoning)
Show Figures

Figure 1

10 pages, 257 KiB  
Article
Repeated Dietary Exposure to Low Levels of Domoic Acid and Problems with Everyday Memory: Research to Public Health Outreach
by Lynn M. Grattan, Carol J. Boushey, Yuanyuan Liang, Kathi A. Lefebvre, Laura J. Castellon, Kelsey A. Roberts, Alexandra C. Toben and J. G. Morris
Toxins 2018, 10(3), 103; https://doi.org/10.3390/toxins10030103 - 28 Feb 2018
Cited by 44 | Viewed by 6175
Abstract
Domoic Acid (DA) is a marine-based neurotoxin. Dietary exposure to high levels of DA via shellfish consumption has been associated with Amnesic Shellfish Poisoning, with milder memory decrements found in Native Americans (NAs) with repetitive, lower level exposures. Despite its importance for protective [...] Read more.
Domoic Acid (DA) is a marine-based neurotoxin. Dietary exposure to high levels of DA via shellfish consumption has been associated with Amnesic Shellfish Poisoning, with milder memory decrements found in Native Americans (NAs) with repetitive, lower level exposures. Despite its importance for protective action, the clinical relevance of these milder memory problems remains unknown. The purpose of this study was to determine whether repeated, lower-level exposures to DA impact everyday memory (EM), i.e., the frequency of memory failures in everyday life. A cross-sectional sample of 60 NA men and women from the Pacific NW was studied with measures of dietary exposure to DA via razor clam (RC) consumption and EM. Findings indicated an association between problems with EM and elevated consumption of RCs with low levels of DA throughout the previous week and past year after controlling for age, sex, and education. NAs who eat a lot of RCs with presumably safe levels of DA are at risk for clinically significant memory problems. Public health outreach to minimize repetitive exposures are now in place and were facilitated by the use of community-based participatory research methods, with active involvement of state regulatory agencies, tribe leaders, and local physicians. Full article
(This article belongs to the Special Issue Public Health Outreach to Prevention of Aquatic Toxin Exposure)
11 pages, 1993 KiB  
Article
Heart Alterations after Domoic Acid Administration in Rats
by Andres C. Vieira, José Manuel Cifuentes, Roberto Bermúdez, Sara F. Ferreiro, Albina Román Castro and Luis M. Botana
Toxins 2016, 8(3), 68; https://doi.org/10.3390/toxins8030068 - 10 Mar 2016
Cited by 13 | Viewed by 7166
Abstract
Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. In the present study we [...] Read more.
Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. In the present study we have addressed the long-term toxicological effects (30 days) of DA intraperitoneal administration in rats. Different histological techniques were employed in order to study DA toxicity in heart, an organ which has not been thoroughly studied after DA intoxication to date. The presence of DA was detected by immunohistochemical assays, and cellular alterations were observed both by optical and transmission electron microscopy. Although histological staining methods did not provide any observable tissue damage, transmission electron microscopy showed several injuries: a moderate lysis of myofibrils and loss of mitochondrial conformation. This is the first time the association between heart damage and the presence of the toxin has been observed. Full article
(This article belongs to the Collection Marine and Freshwater Toxins)
Show Figures

Graphical abstract

15 pages, 401 KiB  
Article
Domoic Acid Improves the Competitive Ability of Pseudo-nitzschia delicatissima against the Diatom Skeletonema marinoi
by Emily K. Prince, Friederike Irmer and Georg Pohnert
Mar. Drugs 2013, 11(7), 2398-2412; https://doi.org/10.3390/md11072398 - 11 Jul 2013
Cited by 30 | Viewed by 9278
Abstract
Because domoic acid, a neurotoxic secondary metabolite produced by marine diatoms in the genus Pseudo-nitzschia, is hypothesized to be part of a high affinity iron uptake system, we investigated whether domoic acid could improve the competitive ability of Pseudo-nitzschia delicatissima, and [...] Read more.
Because domoic acid, a neurotoxic secondary metabolite produced by marine diatoms in the genus Pseudo-nitzschia, is hypothesized to be part of a high affinity iron uptake system, we investigated whether domoic acid could improve the competitive ability of Pseudo-nitzschia delicatissima, and whether the availability of iron changed the outcome of competition experiments. We found that domoic acid had a slight negative effect on growth of the diatom Skeletonema marinoi when it was grown in monocultures. However, when S. marinoi was cultured with P. delicatissima the presence of domoic acid resulted in a reduction of S. marinoi cells by up to 38% and an increase in P. delicatissima cell numbers by up to 17% under iron replete conditions. Similar effects were not observed in low iron treatments. Domoic acid was not taken up by P. delicatissima cells. Overall, our results indicate that domoic acid can improve the competitive ability of Pseudo-nitzschia spp. and that iron is likely to be involved. This study provides an unusual example of indirect inhibition of competitor growth mediated by a secondary metabolite. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Plankton)
Show Figures

Figure 1

12 pages, 404 KiB  
Article
Toxic Effects of Domoic Acid in the Seabream Sparus aurata
by Isabel Nogueira, Alexandre Lobo-da-Cunha, António Afonso, Socorro Rivera, Joana Azevedo, Rogério Monteiro, Rosa Cervantes, Ana Gago-Martinez and Vítor Vasconcelos
Mar. Drugs 2010, 8(10), 2721-2732; https://doi.org/10.3390/md8102721 - 15 Oct 2010
Cited by 16 | Viewed by 10538
Abstract
Neurotoxicity induced in fish by domoic acid (DA) was assessed with respect to occurrence of neurotoxic signs, lethality, and histopathology by light microscopy. Sparus aurata were exposed to a single dose of DA by intraperitoneal (i.p.) injection of 0, 0.45, 0.9, and 9.0 [...] Read more.
Neurotoxicity induced in fish by domoic acid (DA) was assessed with respect to occurrence of neurotoxic signs, lethality, and histopathology by light microscopy. Sparus aurata were exposed to a single dose of DA by intraperitoneal (i.p.) injection of 0, 0.45, 0.9, and 9.0 mg DA kg−1 bw. Mortality (66.67 ± 16.67%) was only observed in dose of 9.0 mg kg−1 bw. Signs of neurological toxicity were detected for the doses of 0.9 and 9.0 mg DA kg−1 bw. Furthermore, the mean concentrations (±SD) of DA detected by HPLC-UV in extracts of brain after exposure to 9.0 mg DA kg−1 bw were 0.61 ± 0.01, 0.96 ± 0.00, and 0.36 ± 0.01 mg DA kg−1 tissue at 1, 2, and 4 hours. The lack of major permanent brain damage in S. aurata, and reversibility of neurotoxic signs, suggest that lower susceptibility to DA or neuronal recovery occurs in affected individuals. Full article
Show Figures

Graphical abstract

29 pages, 7656 KiB  
Review
In Utero Domoic Acid Toxicity: A Fetal Basis to Adult Disease in the California Sea Lion (Zalophus californianus)
by John S. Ramsdell and Tanja S. Zabka
Mar. Drugs 2008, 6(2), 262-290; https://doi.org/10.3390/md6020262 - 6 Jun 2008
Cited by 71 | Viewed by 18058
Abstract
California sea lions have been a repeated subject of investigation for early life toxicity, which has been documented to occur with increasing frequency from late February through mid-May in association with organochlorine (PCB and DDT) poisoning and infectious disease in the 1970's and [...] Read more.
California sea lions have been a repeated subject of investigation for early life toxicity, which has been documented to occur with increasing frequency from late February through mid-May in association with organochlorine (PCB and DDT) poisoning and infectious disease in the 1970's and domoic acid poisoning in the last decade. The mass early life mortality events result from the concentrated breeding grounds and synchronization of reproduction over a 28 day post partum estrus cycle and 11 month in utero phase. This physiological synchronization is triggered by a decreasing photoperiod of 11.48 h/day that occurs approximately 90 days after conception at the major California breeding grounds. The photoperiod trigger activates implantation of embryos to proceed with development for the next 242 days until birth. Embryonic diapause is a selectable trait thought to optimize timing for food utilization and male migratory patterns; yet from the toxicological perspective presented here also serves to synchronize developmental toxicity of pulsed environmental events such as domoic acid poisoning. Research studies in laboratory animals have defined age-dependent neurotoxic effects during development and windows of susceptibility to domoic acid exposure. This review will evaluate experimental domoic acid neurotoxicity in developing rodents and, aided by comparative allometric projections, will analyze potential prenatal toxicity and exposure susceptibility in the California sea lion. This analysis should provide a useful tool to forecast fetal toxicity and understand the impact of fetal toxicity on adult disease of the California sea lion. Full article
(This article belongs to the Special Issue Marine Toxins)
Show Figures

14 pages, 3180 KiB  
Article
Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and Hippocampus
by Santokh S. Gill, Yangxun Hou, Talat Ghane and Olga M. Pulido
Mar. Drugs 2008, 6(1), 25-38; https://doi.org/10.3390/md6010025 - 14 Feb 2008
Cited by 27 | Viewed by 11590
Abstract
Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors [...] Read more.
Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors eliciting a very rapid and potent neurotoxic response. The hippocampus, among other brain regions, has been identified as a specific target site having high sensitivity to DOM toxicity. Histopathology evidence indicates that in addition to neurons, the astrocytes were also injured. Electron microscopy data reported in this study further supports the light microscopy findings. Furthermore, the effect of DOM was confirmed by culturing primary astrocytes from the hippocampus and the brain stem and subsequently exposing them to domoic acid. The RNA was extracted and used for biomarker analysis. The biomarker analysis was done for the early response genes including c-fos, c-jun, c-myc, Hsp-72; specific marker for the astrocytes- GFAP and the glutamate receptors including GluR 2, NMDAR 1, NMDAR 2A and B. Although, the astrocyte-GFAP and c-fos were not affected, c-jun and GluR 2 were down-regulated. The microarray analysis revealed that the chemokines / cytokines, tyrosine kinases (Trk), and apoptotic genes were altered. The chemokines that were up-regulated included - IL1-a, IL-1B, IL-6, the small inducible cytokine, interferon protein IP-10, CXC chemokine LIX, and IGF binding proteins. The Bax, Bcl-2, Trk A and Trk B were all downregulated. Interestingly, only the hippocampal astrocytes were affected. Our findings suggest that astrocytes may present a possible target for pharmacological interventions for the prevention and treatment of amnesic shellfish poisoning and for other brain pathologies involving excitotoxicity Full article
(This article belongs to the Special Issue Marine Toxins)
Show Figures

Figure 1

Back to TopTop