Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Diarrhoeagenic bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 257 KiB  
Article
Antibiotic Resistance Profiles of Diarrhoeagenic Enterobacterales in Bioko Island, Equatorial Guinea
by Úrsula-Eva Eñeso Efuá, Silvia Herrera-León, Fátima Patabobe, Pascual Erasmo Owono and Agustín Benito
Acta Microbiol. Hell. 2025, 70(2), 24; https://doi.org/10.3390/amh70020024 - 10 Jun 2025
Viewed by 966
Abstract
Acute diarrhoeal disease caused by antibiotic-resistant diarrhoeagenic bacteria is a significant global public health issue, particularly in low- and middle-income countries. This study provides the first molecular characterisation of antimicrobial resistance profiles, including the detection of CTX-M-15 and CTX-M-55 extended-spectrum beta-lactamases (ESBLs), among [...] Read more.
Acute diarrhoeal disease caused by antibiotic-resistant diarrhoeagenic bacteria is a significant global public health issue, particularly in low- and middle-income countries. This study provides the first molecular characterisation of antimicrobial resistance profiles, including the detection of CTX-M-15 and CTX-M-55 extended-spectrum beta-lactamases (ESBLs), among diarrhoeagenic Enterobacterales in Bioko Island, Equatorial Guinea, offering novel epidemiological insights into an understudied region. This study investigated the antibiotic resistance profiles of pathogenic bacteria isolated from diarrhoeal samples on Bioko Island. A total of 153 clinical isolates were collected between 1 February and 30 May 2014, and antimicrobial susceptibility testing was performed at Loeri Comba Polyclinic (Malabo) using the Kirby–Bauer method. The molecular characterisation of β-lactamase-associated genes was performed on different isolates of diarrhoeagenic pathotypes—144 Escherichia coli, 7 Salmonella enterica, and 2 Shigella flexneri—at the National Centre for Microbiology (Majadahonda, Spain). High resistance rates were detected against ampicillin (98%), tetracycline (93.5%), sulfonamides (94.8%), sulfamethoxazole–trimethoprim (88.2%), and cefotaxime (78.8%), while moderate rates of resistance were noted for ciprofloxacin (26.7%), and all isolates remained susceptible to imipenem. Of the isolates, 107 (69.9%) produced either single or multiple β-lactamases. Among these, 73 (68.2%) harbored classical β-lactamases, specifically TEM and OXA-1 types, representing 47.7% of the total sample. Additionally, 34 (31.8%) of the isolates were identified as producers of extended-spectrum β-lactamases (ESBLs), specifically CTX-M enzymes. Sequencing identified CTX-M-15 and CTX-M-55 variants. The predominant ESBL-producing bacteria were enteroaggregative Escherichia coli (56.2%), followed by enteropathogenic and enterotoxigenic E. coli. These findings confirm the circulation of multidrug-resistant diarrhoeagenic Enterobacterales in Equatorial Guinea, raising concerns about limited treatment options due to widespread resistance to multiple antibiotic classes, including third-generation cephalosporins and quinolones. The most important conclusion drawn from this study is that a high percentage of diarrhoeagenic bacteria have an antibiotic resistance and multi-resistance profile, especially to beta-lactams and other groups of antibiotics such as tetracyclines and sulphonamides. There is also a moderate prevalence of isolates carrying ESBLs on Bioko Island, Equatorial Guinea, which could indicate the inappropriate use of antimicrobials. Full article
9 pages, 267 KiB  
Article
Global Dynamics of Gastrointestinal Colonisations and Antimicrobial Resistance: Insights from International Travellers to Low- and Middle-Income Countries
by Laura Seijas-Pereda, David Carmena, Carlos Rescalvo-Casas, Marcos Hernando-Gozalo, Laura Prieto-Pérez, Juan Cuadros-González and Ramón Pérez-Tanoira
Trop. Med. Infect. Dis. 2024, 9(8), 182; https://doi.org/10.3390/tropicalmed9080182 - 17 Aug 2024
Cited by 1 | Viewed by 1222
Abstract
Gastrointestinal microorganism resistance and dissemination are increasing, partly due to international travel. This study investigated gastrointestinal colonisations and the acquisition of antimicrobial resistance (AMR) genes among international travellers moving between Spain and low- and middle-income countries (Peru and Ethiopia). We analysed 102 stool [...] Read more.
Gastrointestinal microorganism resistance and dissemination are increasing, partly due to international travel. This study investigated gastrointestinal colonisations and the acquisition of antimicrobial resistance (AMR) genes among international travellers moving between Spain and low- and middle-income countries (Peru and Ethiopia). We analysed 102 stool samples from 51 volunteers collected before and after travel, revealing significantly higher rates of colonisation by both bacteria and protists upon return. Diarrhoeagenic strains of E. coli were the most notable microorganism detected using RT-PCR with the Seegene Allplex™ Gastrointestinal Panel Assays. A striking prevalence of β-lactamase resistance genes, particularly the TEM gene, was observed both before and after travel. No significant differences in AMR genes were found between the different locations. These findings highlight the need for rigorous surveillance and preventive strategies, as travel does not significantly impact AMR gene acquisition but does affect microbial colonisations. This study provides valuable insights into the intersection of gastrointestinal microorganism acquisition and AMR in international travellers, underscoring the need for targeted interventions and increased awareness. Full article
(This article belongs to the Special Issue Contemporary Migrant Health, 2nd Edition)
20 pages, 3289 KiB  
Article
Dynamic Interactions between Diarrhoeagenic Enteroaggregative Escherichia coli and Presumptive Probiotic Bacteria: Implications for Gastrointestinal Health
by Wisdom Selorm Kofi Agbemavor and Elna Maria Buys
Microorganisms 2023, 11(12), 2942; https://doi.org/10.3390/microorganisms11122942 - 8 Dec 2023
Cited by 3 | Viewed by 1536
Abstract
This study delves into the temporal dynamics of bacterial interactions in the gastrointestinal tract, focusing on how probiotic strains and pathogenic bacteria influence each other and human health. This research explores adhesion, competitive exclusion, displacement, and inhibition of selected diarrhoeagenic Escherichia coli (D-EAEC) [...] Read more.
This study delves into the temporal dynamics of bacterial interactions in the gastrointestinal tract, focusing on how probiotic strains and pathogenic bacteria influence each other and human health. This research explores adhesion, competitive exclusion, displacement, and inhibition of selected diarrhoeagenic Escherichia coli (D-EAEC) and potential probiotic strains under various conditions. Key findings reveal that adhesion is time-dependent, with both D-EAEC K2 and probiotic L. plantarum FS2 showing increased adhesion over time. Surprisingly, L. plantarum FS2 outperformed D-EAEC K2 in adhesion and exhibited competitive exclusion and displacement, with inhibition of adhesion surpassing competitive exclusion. This highlights probiotics’ potential to slow pathogen attachment when not in competition. Pre-infecting with L. plantarum FS2 before pathogenic infection effectively inhibited adhesion, indicating probiotics’ ability to prevent pathogen attachment. Additionally, adhesion correlated strongly with interleukin-8 (IL-8) secretion, linking it to the host’s inflammatory response. Conversely, IL-8 secretion negatively correlated with trans-epithelial electrical resistance (TEER), suggesting a connection between tight junction disruption and increased inflammation. These insights offer valuable knowledge about the temporal dynamics of gut bacteria interactions and highlight probiotics’ potential in competitive exclusion and inhibiting pathogenic bacteria, contributing to strategies for maintaining gastrointestinal health and preventing infections. Full article
(This article belongs to the Special Issue Escherichia coli and Food Safety 2.0)
Show Figures

Figure 1

18 pages, 5394 KiB  
Article
Specific Proteomic Identification of Collagen-Binding Proteins in Escherichia coli O157:H7: Characterisation of OmpA as a Potent Vaccine Antigen
by Ricardo Monteiro, Ingrid Chafsey, Nelly Caccia, Valentin Ageorges, Sabine Leroy, Didier Viala, Michel Hébraud, Valérie Livrelli, Mariagrazia Pizza, Alfredo Pezzicoli and Mickaël Desvaux
Cells 2023, 12(12), 1634; https://doi.org/10.3390/cells12121634 - 15 Jun 2023
Cited by 3 | Viewed by 2532
Abstract
Escherichia coli is a versatile commensal species of the animal gut that can also be a pathogen able to cause intestinal and extraintestinal infections. The plasticity of its genome has led to the evolution of pathogenic strains, which represent a threat to global [...] Read more.
Escherichia coli is a versatile commensal species of the animal gut that can also be a pathogen able to cause intestinal and extraintestinal infections. The plasticity of its genome has led to the evolution of pathogenic strains, which represent a threat to global health. Additionally, E. coli strains are major drivers of antibiotic resistance, highlighting the urgent need for new treatment and prevention measures. The antigenic and structural heterogeneity of enterohaemorrhagic E. coli colonisation factors has limited their use for the development of effective and cross-protective vaccines. However, the emergence of new strains that express virulence factors deriving from different E. coli diarrhoeagenic pathotypes suggests that a vaccine targeting conserved proteins could be a more effective approach. In this study, we conducted proteomics analysis and functional protein characterisation to identify a group of proteins potentially involved in the adhesion of E. coli O157:H7 to the extracellular matrix and intestinal epithelial cells. Among them, OmpA has been identified as a highly conserved and immunogenic antigen, playing a significant role in the adhesion phenotype of E. coli O157:H7 and in bacterial aggregation. Furthermore, antibodies raised against recombinant OmpA effectively reduced the adhesion of E. coli O157:H7 to intestinal epithelial cells. The present work highlights the role of OmpA as a potent antigen for the development of a vaccine against intestinal pathogenic E. coli. Full article
(This article belongs to the Section Cell Motility and Adhesion)
Show Figures

Figure 1

18 pages, 640 KiB  
Article
Mixed Aetiology of Diarrhoea in Infants Attending Clinics in the North-West Province of South Africa: Potential for Sub-Optimal Treatment
by Martina O. Chukwu, Akebe Luther King Abia, Eunice Ubomba-Jaswa, John Barr Dewar and C.L. Obi
Pathogens 2020, 9(3), 198; https://doi.org/10.3390/pathogens9030198 - 6 Mar 2020
Cited by 8 | Viewed by 4685
Abstract
Routine diagnostic methods for the aetiologic agents of diarrhoea in most developing countries are usually not sensitive enough, leading to under-diagnosis. Thus, this study investigated possible mixed diarrhoeal aetiology by using cultures and real-time polymerase chain reactions (PCR) in children younger than four [...] Read more.
Routine diagnostic methods for the aetiologic agents of diarrhoea in most developing countries are usually not sensitive enough, leading to under-diagnosis. Thus, this study investigated possible mixed diarrhoeal aetiology by using cultures and real-time polymerase chain reactions (PCR) in children younger than four years old in the Northwest Province, South Africa. In total, 505 stool samples were collected from symptomatic and asymptomatic children who were attending three clinics and the Brits hospital in Madibeng District, between September 2016 and December 2017. Rotavirus, norovirus, Campylobacter, Arcobacter, and diarrhoeagenic Escherichia coli (DEC) were targeted. Campylobacter spp. (24.6%), Arcobacter (15.8%) and DEC (19.6%) were detected using PCR; only Campylobacter spp. (29.7%) and DEC (26.9%) were detected through the culture. Campylobacter jejuni (36%), Campylobacter coli (28%), Campylobacter upsalensis (12%), and Arcobacter butzleri (15.8%) were the only spp. of Campylobacter and Arcobacter identified. The eaeA gene (31.4%) of enteropathogenic E. coli/enterohaemorrhagic E. coli (EPEC/EHEC) was the most prevalent DEC virulence gene (VG) identified. Rotavirus and norovirus were detected at 23.4% and 20%, respectively. Mixed viral aetiology (7.3%) and the co-infection of A. butzleri and Campylobacter (49%) were recorded. A mixed bacterial-viral aetiology was observed in 0.6% of the specimens. Sensitive diagnostic procedures like PCR should be considered to provide the best treatment to children experiencing diarrhoea. Full article
Show Figures

Figure 1

15 pages, 705 KiB  
Article
Winning the War against Multi-Drug Resistant Diarrhoeagenic Bacteria
by Chizoba Mercy Enemchukwu, Angus Nnamdi Oli, Ebere Innocent Okoye, Nonye Treasure Ujam, Emmanuel O. Osazuwa, George Ogonna Emechebe, Kenneth Nchekwube Okeke, Christian Chukwuemeka Ifezulike, Obiora Shedrack Ejiofor and Jude Nnaemeka Okoyeh
Microorganisms 2019, 7(7), 197; https://doi.org/10.3390/microorganisms7070197 - 10 Jul 2019
Cited by 8 | Viewed by 3733
Abstract
Drug-resistant-diarrhoeagenic bacteria are currently emerging healthcare challenge. This study investigated the effects of Vernonia amygdalina, Garcinia kola, tetracycline and metronidazole combinations on such bacteria. Agar well diffusion method was employed to determine the inhibitory effects of the herbal extracts on diarrhoeagenic [...] Read more.
Drug-resistant-diarrhoeagenic bacteria are currently emerging healthcare challenge. This study investigated the effects of Vernonia amygdalina, Garcinia kola, tetracycline and metronidazole combinations on such bacteria. Agar well diffusion method was employed to determine the inhibitory effects of the herbal extracts on diarrhoeagenic bacteria while Time-Kill Assay was used to determine bactericidal effects of the extracts against test isolates. Interactions between plant extracts and antibiotics were investigated using Checkerboard assay. Minimum inhibitory concentrations of the extracts against the bacterial isolates ranged between 3.125–50 mg/mL, while those of tetracycline and metronidazole ranged from 30–50 μg/mL. Synergism was observed against B. cereus and S. aureus for metronidazole + aqueous G. kola at all ratios. Generally, the combinations aqueous G. kola + ethanolic G. kola and aqueous G. kola + ethanolic V. amygdalina showed more pronounced synergism against the Staphylococcus aureus than B. cereus isolates with the fractional inhibition concentration (FIC) indices ranging from 0.32–0.95. Synergism of tetracycline + crude extracts and metronidazole combinations were more pronounced on the test isolates and especially on the Gram-negative organisms with FIC indices ranging from 0.41–0.91. Conclusion: The herbal extracts combinations and extracts–antibiotics combinations are synergistic on diarrhoeagenic bacteria at defined combination ratios. Full article
(This article belongs to the Special Issue Fighting Multidrug Resistance with Natural Antimicrobials)
Show Figures

Figure 1

Back to TopTop