Global Dynamics of Gastrointestinal Colonisations and Antimicrobial Resistance: Insights from International Travellers to Low- and Middle-Income Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Sample Processing
- GI-Bacteria (I) Assay: Aeromonas spp., Campylobacter spp., Clostridioides difficile toxin B, Salmonella spp., Enteroinvasive Escherichia coli/Shigella spp., Vibrio spp., and Yersinia enterocolitica.
- GI-Bacteria (II) Assay: Enteroaggregative E. coli (EAEC), Enteropathogenic E. coli (EPEC), E. coli O157, Enterotoxigenic E. coli (ETEC), Hypervirulent Clostridioides difficile, and Enterohemorrhagic E. coli (EHEC).
- GI-Parasite: Blastocystis hominis, Giardia lamblia, Dientamoeba fragilis, Entamoeba histolytica, Cyclospora cayetanensis, and Cryptosporidium spp.
- ESBL genes: TEM, SHV and CTX-M, and Colistin resistance gene: mcr-1.
- Vancomycin resistance genes: VanA and VanB.
- Carbapenemase-encoding genes: NDM, VIM, OXA, KPC, and IMP.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- -
- Elevated rates of positive isolations: Significantly higher rates of positive isolations for both protozoal and bacterial microorganisms were observed in travellers returning from LMICs, specifically Peru and Ethiopia. This highlights an urgent need for further research, as the full implications of these findings remain unclear.
- -
- Prevalent diarrhoeagenic E. coli strains: Enteroaggregative and enteropathogenic strains of E. coli emerged as the most common microorganisms among returning travellers.
- -
- Comparative risk by destination: Travel to Peru was associated with a higher likelihood of colonisations by gastrointestinal bacteria and protists compared to travel to Ethiopia. However, larger-scale studies are necessary to confirm this trend.
- -
- AMR gene prevalence: No significant differences were found in the prevalence of antimicrobial resistance (AMR) genes between pre- and post-travel samples, underscoring the extensive global prevalence of these genes within communities.
- -
- Concerning β-lactamase trends: The high prevalence of β-lactamase genes, particularly the TEM gene, reflects a troubling global trend in antimicrobial resistance. Our findings suggest that β-lactamases are widespread in the community, with transmission potentially occurring through both travel and human-to-human contact.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arcilla, M.S.; van Hattem, J.M.; Haverkate, M.R.; Bootsma, M.C.J.; van Genderen, P.J.J.; Goorhuis, A.; Grobusch, M.P.; Lashof, A.M.O.; Molhoek, N.; Schultsz, C.; et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): A prospective, multicentre cohort study. Lancet Infect. Dis. 2017, 17, 78–85. [Google Scholar] [CrossRef]
- Ny, S.; Löfmark, S.; Börjesson, S.; Englund, S.; Ringman, M.; Bergström, J.; Nauclér, P.; Giske, C.G.; Byfors, S. Community carriage of ESBL-producing Escherichia coli is associated with strains of low pathogenicity: A Swedish nationwide study. J. Antimicrob. Chemother. 2017, 72, 582–588. [Google Scholar] [CrossRef]
- Raffelsberger, N.; Buczek, D.J.; Svendsen, K.; Småbrekke, L.; Pöntinen, A.K.; Löhr, I.H.; Andreassen, L.L.E.; Simonsen, G.S.; Norwegian E. coli ESBL Study Group; Sundsfjord, A.; et al. Community carriage of ESBL-producing Escherichia coli and Klebsiella pneumoniae: A cross-sectional study of risk factors and comparative genomics of carriage and clinical isolates. mSphere 2023, 8, e00025-23. [Google Scholar] [CrossRef]
- Karanika, S.; Karantanos, T.; Arvanitis, M.; Grigoras, C.; Mylonakis, E. Fecal colonization with extended-spectrum beta-lactamase–producing Enterobacteriaceae and risk factors among healthy individuals: A systematic review and metaanalysis. Clin. Infect. Dis. 2016, 63, 310–318. [Google Scholar] [CrossRef]
- Kantele, A.; Lääveri, T.; Mero, S.; Vilkman, K.; Pakkanetn, S.H.; Ollgren, J.; Alntikainen, J.; Kirvedskari, J. Editor’s choice: Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin. Infect. Dis. 2015, 60, 837. [Google Scholar] [CrossRef]
- Hassing, R.J.; Alsma, J.; Arcilla, M.S.; van Genderen, P.J.; Stricker, B.H.; Verbon, A. International travel and acquisition of multidrugresistant Enterobacteriaceae: A systematic review. Eurosurveillance 2015, 20, 30074. [Google Scholar] [CrossRef]
- Epelboin, L.; Robert, J.; Tsyrina-Kouyoumdjian, E.; Laouira, S.; Meyssonnier, V.; Caumes, E. High rate of multidrug-resistant Gram-negative bacilli carriage and infection in hospitalized returning travelers: A cross-sectional cohort study. J. Travel. Med. 2015, 22, 292–299. [Google Scholar] [CrossRef]
- Dallman, T.J.; Neuert, S.; Turienzo, C.F.; Berin, M.; Richardson, E.; Fuentes-Utrilla, P.; Loman, N.; Gharbia, S.; Jenkins, C.; Behrens, R.H.; et al. Prevalence and persistence of antibiotic resistance determinants in the gut of travelers returning to the United Kingdom is associated with colonization by pathogenic Escherichia coli. Microbiol. Spectr. 2023, 11, e05185-22. [Google Scholar] [CrossRef] [PubMed]
- D’souza, A.W.; Boolchandani, M.; Patel, S.; Galazzo, G.; van Hattem, J.M.; Arcilla, M.S.; Melles, D.C.; de Jong, M.D.; Schultsz, C.; COMBAT Consortium; et al. Destination shapes antibiotic resistance gene acquisitions, abundance increases, and diversity changes in Dutch travelers. Genome Med. 2021, 13, 79. [Google Scholar] [CrossRef]
- Lübbert, C.; Straube, L.; Stein, C.; Makarewicz, O.; Schubert, S.; Mössner, J.; Pletz, M.W.; Rodloff, A.C. Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int. J. Med. Microbiol. 2015, 305, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Ruppé, E.; Armand-Lefèvre, L.; Estellat, C.; Consigny, P.-H.; El Mniai, A.; Boussadia, Y.; Goujon, C.; Ralaimazava, P.; Campa, P.; Girard, P.-M.; et al. High rate of acquisition but short duration of carriage of multidrug-resistant Enterobacteriaceae after travel to the tropics. Clin. Infect. Dis. 2015, 61, 593–600. [Google Scholar] [CrossRef]
- Riddle, M.S.; Connor, B.A.; Beeching, N.J.; DuPont, H.L.; Hamer, D.H.; Kozarsky, P.; Libman, M.; Steffen, R.; Taylor, D.; Tribble, D.R.; et al. Guidelines for the prevention and treatment of travelers’ diarrhea: A graded expert panel report. J. Travel Med. 2017, 24. [Google Scholar] [CrossRef]
- Llorente, M.T.; Escudero, R.; Ramiro, R.; Remacha, M.A.; Martínez-Ruiz, R.; Galán-Sánchez, F.; de Frutos, M.; Elía, M.; Onrubia, I.; Sánchez, S. Enteroaggregative Escherichia coli as etiological agent of endemic diarrhea in Spain: A prospective multicenter prevalence study with molecular characterization of isolates. Front. Microbiol. 2023, 14, 1120285. [Google Scholar] [CrossRef]
- Cabal, A.; García-Castillo, M.; Cantón, R.; Gortázar, C.; Domínguez, L.; Álvarez, J. Prevalence of Escherichia coli Virulence Genes in Patients with Diarrhea and a Subpopulation of Healthy Volunteers in Madrid, Spain. Front. Microbiol. 2016, 7, 641. [Google Scholar] [CrossRef]
- Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.Á.; Carrasco Jiménez, E.; Pérez Rodríguez, F.; Astorga Márquez, R.J. Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies. Animals 2023, 13, 3666. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Balaguer, M.D.; Arnedo-Pena, A.; Sabater-Vidal, S.; Moreno-Muñoz, R. Evolución de los serotipos de Salmonella spp. y su sensibilidad antibiótica en el Departamento de Salud Castellón [Evolution of serotypes and antibiotic susceptibility of Salmonella spp. in the Castellón Health District (Spain)]. Rev. Esp. Quimioter. 2024, 37, 362–364. [Google Scholar] [CrossRef]
- Salleh, M.Z.; Nik Zuraina, N.M.N.; Hajissa, K.; Ilias, M.I.; Deris, Z.Z. Prevalence of multidrug-resistant diarrheagenic Escherichia coli in Asia: A systematic review and meta-analysis. Antibiotics 2022, 11, 1333. [Google Scholar] [CrossRef]
- Rodríguez-Villodres, Á.; Martín-Gandul, C.; Peñalva, G.; Guisado-Gil, A.B.; Crespo-Rivas, J.C.; Pachón-Ibáñez, M.E.; Lepe, J.A.; Cisneros, J.M. Prevalence and risk factors for multidrug-resistant organisms colonization in long-term care facilities around the world: A review. Antibiotics 2021, 10, 680. [Google Scholar] [CrossRef]
- Tufic-Garutti, S.d.S.; Ramalho, J.V.A.R.; Longo, L.G.d.A.; de Oliveira, G.C.; Rocha, G.T.; Vilar, L.C.; da Costa, M.D.; Picão, R.C.; Girão, V.B.d.C.; Santoro-Lopes, G.; et al. Acquisition of antimicrobial resistance determinants in Enterobacterales by international travelers from a large urban setting in Brazil. Travel. Med. Infect. Dis. 2021, 41, 102028. [Google Scholar] [CrossRef] [PubMed]
- Neut, C. Carriage of multidrug-resistant bacteria in healthy people: Recognition of several risk groups. Antibiotics 2021, 10, 1163. [Google Scholar] [CrossRef]
- Lorme, F.; Maataoui, N.; Rondinaud, E.; Esposito-Farèse, M.; Clermont, O.; Ruppe, E.; Arlet, G.; Genel, N.; the VOYAG-R study group; Matheron, S.; et al. Acquisition of plasmid-mediated cephalosporinase producing Enterobacteriaceae after a travel to the tropics. PLoS ONE 2018, 13, e0206909. [Google Scholar] [CrossRef]
- Svennerholm, A.M.; Lundgren, A. Developments in oral enterotoxigenic Escherichia coli vaccines. Curr. Opin. Immunol. 2023, 84, 102372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, P.; Zhao, Y.; Ma, X. Enterotoxigenic Escherichia coli: Intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes. 2022, 14, 2055943. [Google Scholar] [CrossRef]
- Armand-Lefèvre, L.; Andremont, A.; Ruppé, E. Travel and acquisition of multidrug-resistant Enterobacteriaceae. Med. Mal. Infect. 2018, 48, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Reuland, E.A.; al Naiemi, N.; Kaiser, A.M.; Heck, M.; Kluytmans, J.A.; Savelkoul, P.H.; Elders, P.J.; Vandenbroucke-Grauls, C.M. Prevalence and risk factors for carriage of ESBL-producing Enterobacteriaceae in Amsterdam. J. Antimicrob. Chemother. 2016, 71, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Dorado-García, A.; Van Duijkeren, E.; Van Den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.; Schmitt, H.; Hald, T.; Evers, E.G.; et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet. Health 2019, 3, e357–e369. [Google Scholar] [CrossRef]
- Davies, M.; Galazzo, G.; van Hattem, J.M.; Arcilla, M.S.; Melles, D.C.; de Jong, M.D.; Schultsz, C.; Wolffs, P.; McNally, A.; van Schaik, W.; et al. Enterobacteriaceae and Bacteroidaceae provide resistance to travel-associated intestinal colonization by multi-drug resistant Escherichia coli. Gut Microbes. 2022, 14, 2060676. [Google Scholar] [CrossRef]
- Ohene Larbi, R.O.; Adeapena, W.; Ayim-Akonor, M.; Ansa, E.D.O.; Tweya, H.; Terry, R.F.; Labi, A.-K.; Harries, A.D. Antimicrobial, multi-drug and colistin resistance in Enterobacteriaceae in healthy pigs in the Greater Accra region of Ghana, 2022: A cross-sectional study. Int. J. Environ. Res. Public Health 2022, 19, 10449. [Google Scholar] [CrossRef] [PubMed]
- Wielders, C.C.H.; Schouls, L.M.; Woudt, S.H.S.; Notermans, D.W.; Hetndrickx, A.P.A.; Bakker, J.; Kuijper, E.J.; Schoffelen, A.F.; de Greeff, S.C. Epidemiology of carbapenem-resistant and carbapenemase-producing Enterobacterales in the Netherlands 2017–2019. Antimicrob. Resist. Infect. Control 2022, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Kamenshchikova, A.; Wolffs, P.F.G.; Hoebe, C.J.P.A.; Penders, J.; Park, H.Y.; Kambale, M.S.; Horstman, K. Combining stool and stories: Exploring antimicrobial resistance among a longitudinal cohort of international health students. BMC Infect. Dis. 2021, 21, 1008. [Google Scholar] [CrossRef]
- Hansen, G.T. Continuous evolution: Perspective on the epidemiology of carbapenemase resistance among Enterobacterales and other Gram-negative bacteria. Infect. Dis. Ther. 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Suay-García, B.; Pérez-Gracia, M.T. Present and future of Carbapenem-Resistant Enterobacteriaceae (CRE) infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Mascellino, M.T. Multi-drug-resistant Gram-negative microorganisms: Epidemiology, treatment, and alternative approach. Antibiotics 2022, 11, 678. [Google Scholar] [CrossRef]
Gastrointestinal Microorganisms | Before (n = 51) | After (n = 51) | p-Value |
---|---|---|---|
Bacteria | |||
Aeromonas spp. | 3 (5.9%) | 2 (3.9%) | 1.000 |
Campylobacter spp. | 0 (0%) | 2 (3.9%) | 0.495 |
Clostridioides difficile toxin B | 0 (0%) | 1 (2.0%) | 1.000 |
Enteroaggregative E. coli (EAEC) | 1 (2.0%) | 12 (23.5%) | 0.002 |
Enteropathogenic E. coli (EPEC) | 8 (15.7%) | 20 (39.2%) | 0.014 |
Enterotoxigenic E. coli (ETEC) | 3 (5.9%) | 9 (17.6%) | 0.122 |
E. coli O157 | 0 (0%) | 1 (2.0%) | 1.000 |
Enterohemorrhagic E. coli (EHEC) | 1 (2.0%) | 0 (0%) | 1.000 |
Parasites | |||
Blastocystis hominis | 11 (21.6%) | 18 (35.3%) | 0.187 |
Dientamoeba fragilis | 3 (5.9%) | 5 (9.8%) | 0.715 |
Giardia lamblia | 2 (3.9%) | 1 (2.0%) | 1.000 |
Detected Gene | Before (n = 38) | After (n = 38) | Total Positive PCR (n = 76) | p-Value |
---|---|---|---|---|
CTX | 16 (42.1%) | 23 (60.5%) | 39 (51.3%) | 0.168 |
TEM | 37 (97.4%) | 36 (94.7%) | 73 (96.1%) | 1.000 |
SHV-1 | 16 (42.1%) | 24 (63.2%) | 40 (52.6%) | 0.107 |
mcr-1 | 3 (7.9%) | 3 (7.9%) | 6 (7.9%) | 1.000 |
VanB | 12 (31.6%) | 7 (18.4%) | 19 (25.0%) | 0.289 |
VIM | 0 (0.0%) | 1 (2.6%) | 1 (1.3%) | 1.000 |
OXA | 1 (2.6%) | 0 (0%) | 1 (1.3%) | 1.000 |
KPC | 1 (2.6%) | 0 (0%) | 1 (1.3%) | 1.000 |
IMP | 1 (2.6%) | 1 (2.6%) | 2 (2.6%) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seijas-Pereda, L.; Carmena, D.; Rescalvo-Casas, C.; Hernando-Gozalo, M.; Prieto-Pérez, L.; Cuadros-González, J.; Pérez-Tanoira, R. Global Dynamics of Gastrointestinal Colonisations and Antimicrobial Resistance: Insights from International Travellers to Low- and Middle-Income Countries. Trop. Med. Infect. Dis. 2024, 9, 182. https://doi.org/10.3390/tropicalmed9080182
Seijas-Pereda L, Carmena D, Rescalvo-Casas C, Hernando-Gozalo M, Prieto-Pérez L, Cuadros-González J, Pérez-Tanoira R. Global Dynamics of Gastrointestinal Colonisations and Antimicrobial Resistance: Insights from International Travellers to Low- and Middle-Income Countries. Tropical Medicine and Infectious Disease. 2024; 9(8):182. https://doi.org/10.3390/tropicalmed9080182
Chicago/Turabian StyleSeijas-Pereda, Laura, David Carmena, Carlos Rescalvo-Casas, Marcos Hernando-Gozalo, Laura Prieto-Pérez, Juan Cuadros-González, and Ramón Pérez-Tanoira. 2024. "Global Dynamics of Gastrointestinal Colonisations and Antimicrobial Resistance: Insights from International Travellers to Low- and Middle-Income Countries" Tropical Medicine and Infectious Disease 9, no. 8: 182. https://doi.org/10.3390/tropicalmed9080182
APA StyleSeijas-Pereda, L., Carmena, D., Rescalvo-Casas, C., Hernando-Gozalo, M., Prieto-Pérez, L., Cuadros-González, J., & Pérez-Tanoira, R. (2024). Global Dynamics of Gastrointestinal Colonisations and Antimicrobial Resistance: Insights from International Travellers to Low- and Middle-Income Countries. Tropical Medicine and Infectious Disease, 9(8), 182. https://doi.org/10.3390/tropicalmed9080182