Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = DNAAFs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2776 KiB  
Article
Diagnostic Role of Immunofluorescence Analysis in Primary Ciliary Dyskinesia-Suspected Individuals
by Elif Karakoç, Rim Hjeij, Zeynep Bengisu Kaya, Nagehan Emiralioğlu, Dilber Ademhan Tural, Pergin Atilla, Uğur Özçelik and Heymut Omran
J. Clin. Med. 2025, 14(6), 1941; https://doi.org/10.3390/jcm14061941 - 13 Mar 2025
Cited by 1 | Viewed by 959
Abstract
Background/Objectives: Primary ciliary dyskinesia (PCD) (OMIM: 244400) is a hereditary, rare disorder with a high prevalence in Turkey due to a high rate of consanguinity. The disorder is caused by malfunctioning motile cilia and is characterized by a variety of clinical symptoms [...] Read more.
Background/Objectives: Primary ciliary dyskinesia (PCD) (OMIM: 244400) is a hereditary, rare disorder with a high prevalence in Turkey due to a high rate of consanguinity. The disorder is caused by malfunctioning motile cilia and is characterized by a variety of clinical symptoms including sinusitis, otitis media and chronic obstructive pulmonary disease. This study presents the first assessment of the efficacy of immunofluorescence (IF) labeling for diagnosing PCD in Turkey by correlating IF with clinical observations when genetic data are scarce. Methods: We have a cohort of 54 PCD-suspected individuals with an age range of 5–27 years classified into two groups: group A with available genomic data (8 individuals) and group B with no available genomic data (46 individuals). We performed immunofluorescence analysis to confirm the pathogenicity of the variants in individuals with a prior genetic diagnosis and to confirm a PCD diagnosis in individuals with typical PCD symptoms and no genetic diagnosis. Results: All individuals had airway infections and displayed clinical symptoms of PCD. Our data revealed an absence of outer dynein arm dynein heavy chain DNAH5 in individuals with pathogenic variants in DNAH5 and DNAAF1 and in 17 other PCD-suspected individuals, an absence of nexin–dynein regulatory complex component GAS8 in 8 PCD-suspected individuals, an absence of outer dynein arm dynein heavy chain DNAH11 in 6 PCD-suspected individuals and an absence of radial spoke head component RSPH9 in 2 PCD-suspected individuals. Furthermore, the pathogenicity of ARMC4 variants was confirmed by the absence of the outer dynein arm docking complex component ARMC4 and the proximal localization of DNAH5. Conclusions: Immunofluorescence analysis, owing to its lower cost and quicker turnaround time, proves to be a powerful tool for diagnosing PCD even in the absence of genetic data or electron microscopy results. Full article
(This article belongs to the Special Issue Pediatric Pulmonology: Recent Developments and Emerging Trends)
Show Figures

Figure 1

12 pages, 796 KiB  
Article
Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars
by Henry Reyer, Ibrahim Abou-Soliman, Martin Schulze, Hubert Henne, Norbert Reinsch, Jennifer Schoen and Klaus Wimmers
Genes 2024, 15(3), 382; https://doi.org/10.3390/genes15030382 - 20 Mar 2024
Cited by 7 | Viewed by 2855
Abstract
Since artificial insemination is common practice in pig breeding, the quality and persistence of the semen are decisive for the usability of individual boars. In the current study, genome-wide association analyses were performed to investigate the genetic variability underlying phenotypic variations in semen [...] Read more.
Since artificial insemination is common practice in pig breeding, the quality and persistence of the semen are decisive for the usability of individual boars. In the current study, genome-wide association analyses were performed to investigate the genetic variability underlying phenotypic variations in semen characteristics. These traits comprise sperm morphology and sperm motility under different temporal and thermal storage conditions, in addition to standard semen quality parameters. Two consecutive samples of the fourth and fifth ejaculates from the same boar were comprehensively analyzed in a genotyped Piétrain boar population. A total of 13 genomic regions on different chromosomes were identified that contain single-nucleotide polymorphisms significantly associated with these traits. Subsequent analysis of the genomic regions revealed candidate genes described to be involved in spermatogenesis, such as FOXL3, GPER1, PDGFA, PRKAR1B, SNRK, SUN1, and TSPO, and sperm motility, including ARRDC4, CEP78, DNAAF5, and GPER1. Some of these genes were also associated with male fertility or infertility in mammals (e.g., CEP78, GPER1). The analyses based on these laboriously determined and valuable phenotypes contribute to a better understanding of the genetic background of male fertility traits in pigs and could prospectively contribute to the improvement of sperm quality through breeding approaches. Full article
(This article belongs to the Special Issue Advances in Pig Breeding and Genetics (Volume II))
Show Figures

Figure 1

17 pages, 2109 KiB  
Article
Characterization of Systemic and Culprit-Coronary Artery miR-483-5p Expression in Chronic CAD and Acute Myocardial Infarction Male Patients
by Olga Volodko, Natalia Volinsky, Merav Yarkoni, Nufar Margalit, Fabio Kusniec, Doron Sudarsky, Gabby Elbaz-Greener, Shemy Carasso and Offer Amir
Int. J. Mol. Sci. 2023, 24(10), 8551; https://doi.org/10.3390/ijms24108551 - 10 May 2023
Cited by 2 | Viewed by 2693
Abstract
Coronary artery disease (CAD) is the leading cause of mortality worldwide. In chronic and myocardial infarction (MI) states, aberrant levels of circulating microRNAs compromise gene expression and pathophysiology. We aimed to compare microRNA expression in chronic-CAD and acute-MI male patients in peripheral blood [...] Read more.
Coronary artery disease (CAD) is the leading cause of mortality worldwide. In chronic and myocardial infarction (MI) states, aberrant levels of circulating microRNAs compromise gene expression and pathophysiology. We aimed to compare microRNA expression in chronic-CAD and acute-MI male patients in peripheral blood vasculature versus coronary arteries proximal to a culprit area. Blood from chronic-CAD, acute-MI with/out ST segment elevation (STEMI/NSTEMI, respectively), and control patients lacking previous CAD or having patent coronary arteries was collected during coronary catheterization from peripheral arteries and from proximal culprit coronary arteries aimed for the interventions. Random coronary arterial blood was collected from controls; RNA extraction, miRNA library preparation and Next Generation Sequencing followed. High concentrations of microRNA-483-5p (miR-483-5p) were noted as ‘coronary arterial gradient’ in culprit acute-MI versus chronic-CAD (p = 0.035) which were similar to controls versus chronic-CAD (p < 0.001). Meanwhile, peripheral miR-483-5p was downregulated in acute-MI and chronic-CAD, compared with controls (1.1 ± 2.2 vs. 2.6 ± 3.3, respectively, p < 0.005). A receiver operating characteristic curve analysis for miR483-5p association with chronic CAD demonstrated an area under the curve of 0.722 (p < 0.001) with 79% sensitivity and 70% specificity. Using in silico gene analysis, we detected miR-483-5p cardiac gene targets, responsible for inflammation (PLA2G5), oxidative stress (NUDT8, GRK2), apoptosis (DNAAF10), fibrosis (IQSEC2, ZMYM6, MYOM2), angiogenesis (HGSNAT, TIMP2) and wound healing (ADAMTS2). High miR-483-5p ‘coronary arterial gradient’ in acute-MI, unnoticed in chronic-CAD, suggests important local mechanisms for miR483-5p in CAD in response to local myocardial ischemia. MiR-483-5p may have an important role as a gene modulator for pathologic and tissue repair states, is a suggestive biomarker, and is a potential therapeutic target for acute and chronic cardiovascular disease. Full article
(This article belongs to the Special Issue Biology and Development of Therapeutic Drugs Targeting DNA)
Show Figures

Figure 1

15 pages, 1590 KiB  
Review
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms’ Preassembly
by Hanna Fabczak and Anna Osinka
Int. J. Mol. Sci. 2019, 20(24), 6174; https://doi.org/10.3390/ijms20246174 - 7 Dec 2019
Cited by 25 | Viewed by 6501
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly [...] Read more.
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder. Full article
Show Figures

Figure 1

22 pages, 893 KiB  
Review
Exploring the Role of Fallopian Ciliated Cells in the Pathogenesis of High-Grade Serous Ovarian Cancer
by Michela Coan, Gian Luca Rampioni Vinciguerra, Laura Cesaratto, Emanuela Gardenal, Riccardo Bianchet, Erik Dassi, Andrea Vecchione, Gustavo Baldassarre, Riccardo Spizzo and Milena Sabrina Nicoloso
Int. J. Mol. Sci. 2018, 19(9), 2512; https://doi.org/10.3390/ijms19092512 - 24 Aug 2018
Cited by 38 | Viewed by 7740
Abstract
High-grade serous epithelial ovarian cancer (HGSOC) is the fifth leading cause of cancer death in women and the first among gynecological malignancies. Despite an initial response to standard chemotherapy, most HGSOC patients relapse. To improve treatment options, we must continue investigating tumor biology. [...] Read more.
High-grade serous epithelial ovarian cancer (HGSOC) is the fifth leading cause of cancer death in women and the first among gynecological malignancies. Despite an initial response to standard chemotherapy, most HGSOC patients relapse. To improve treatment options, we must continue investigating tumor biology. Tumor characteristics (e.g., risk factors and epidemiology) are valuable clues to accomplish this task. The two most frequent risk factors for HGSOC are the lifetime number of ovulations, which is associated with increased oxidative stress in the pelvic area caused by ovulation fluid, and a positive family history due to genetic factors. In the attempt to identify novel genetic factors (i.e., genes) associated with HGSOC, we observed that several genes in linkage with HGSOC are expressed in the ciliated cells of the fallopian tube. This finding made us hypothesize that ciliated cells, despite not being the cell of origin for HGSOC, may take part in HGSOC tumor initiation. Specifically, malfunction of the ciliary beat impairs the laminar fluid flow above the fallopian tube epithelia, thus likely reducing the clearance of oxidative stress caused by follicular fluid. Herein, we review the up-to-date findings dealing with HGSOC predisposition with the hypothesis that fallopian ciliated cells take part in HGSOC onset. Finally, we review the up-to-date literature concerning genes that are located in genomic loci associated with epithelial ovarian cancer (EOC) predisposition that are expressed by the fallopian ciliated cells. Full article
(This article belongs to the Special Issue Ovarian Cancer: Pathogenesis, Diagnosis, and Treatment)
Show Figures

Graphical abstract

17 pages, 543 KiB  
Article
Whole Exome Sequencing of Extreme Morbid Obesity Patients: Translational Implications for Obesity and Related Disorders
by Gilberto Paz-Filho, Margaret C.S. Boguszewski, Claudio A. Mastronardi, Hardip R. Patel, Angad S. Johar, Aaron Chuah, Gavin A. Huttley, Cesar L. Boguszewski, Ma-Li Wong, Mauricio Arcos-Burgos and Julio Licinio
Genes 2014, 5(3), 709-725; https://doi.org/10.3390/genes5030709 - 25 Aug 2014
Cited by 21 | Viewed by 11047
Abstract
Whole-exome sequencing (WES) is a new tool that allows the rapid, inexpensive and accurate exploration of Mendelian and complex diseases, such as obesity. To identify sequence variants associated with obesity, we performed WES of family trios of one male teenager and one female [...] Read more.
Whole-exome sequencing (WES) is a new tool that allows the rapid, inexpensive and accurate exploration of Mendelian and complex diseases, such as obesity. To identify sequence variants associated with obesity, we performed WES of family trios of one male teenager and one female child with severe early-onset obesity. Additionally, the teenager patient had hypopituitarism and hyperprolactinaemia. A comprehensive bioinformatics analysis found de novo and compound heterozygote sequence variants with a damaging effect on genes previously associated with obesity in mice (LRP2) and humans (UCP2), among other intriguing mutations affecting ciliary function (DNAAF1). A gene ontology and pathway analysis of genes harbouring mutations resulted in the significant identification of overrepresented pathways related to ATP/ITP (adenosine/inosine triphosphate) metabolism and, in general, to the regulation of lipid metabolism. We discuss the clinical and physiological consequences of these mutations and the importance of these findings for either the clinical assessment or eventual treatment of morbid obesity. Full article
(This article belongs to the Special Issue Grand Celebration: 10th Anniversary of the Human Genome Project)
Show Figures

Graphical abstract

Back to TopTop