Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = DNA polymerase ε

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 3813 KiB  
Case Report
Unveiling ctDNA Response: Immune Checkpoint Blockade Therapy in a Patient with POLE Mutation-Associated Early-Onset Colon Cancer
by Ramya Ramachandran, Marisa Cannon, Supriya Peshin, Madappa Kundranda and Aaron J. Scott
Curr. Oncol. 2025, 32(7), 370; https://doi.org/10.3390/curroncol32070370 - 25 Jun 2025
Viewed by 685
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide and the second leading cause of cancer-related mortality in the United States. The incidence of early-onset colorectal cancer (EOCRC) has been increasing over the past several decades. While the etiologies for this rising [...] Read more.
Colorectal cancer (CRC) is the third most common malignancy worldwide and the second leading cause of cancer-related mortality in the United States. The incidence of early-onset colorectal cancer (EOCRC) has been increasing over the past several decades. While the etiologies for this rising incidence remain unclear, genetic factors likely play an important role. DNA polymerase epsilon (POLE) mutations occur at a higher rate than average-onset colorectal cancer (AOCRC). DNA polymerase epsilon (Pol ε) is a high-fidelity, processive polymerase that is a promising target for immune checkpoint inhibitors due to its association with various human malignancies, including colorectal cancer. EOCRC remains a major area of focus, and POLE mutations leading to the high-TMB subtype constitute a potential therapeutic target. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

18 pages, 7957 KiB  
Article
Electrospun Poly(L-lactide-co-ε-caprolactone) Nanofibers with Hydroxyapatite Nanoparticles Mimic Cellular Interplay in Bone Regeneration
by Eva Šebová, Filipa Leal, Michala Klusáček Rampichová, Viraj P. Nirwan, Amir Fahmi, Pedro F. Costa and Eva Filová
Int. J. Mol. Sci. 2025, 26(11), 5383; https://doi.org/10.3390/ijms26115383 - 4 Jun 2025
Viewed by 559
Abstract
This study investigates the impact of hydroxyapatite (HA) nanoparticles (NPs) on the cellular responses of poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds in bone tissue engineering applications. Three types of PLCL scaffolds were fabricated, varying in HANPs content. Saos-2 osteoblast-like cells (OBs) and THP-1-derived osteoclast-like cells (OCs) [...] Read more.
This study investigates the impact of hydroxyapatite (HA) nanoparticles (NPs) on the cellular responses of poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds in bone tissue engineering applications. Three types of PLCL scaffolds were fabricated, varying in HANPs content. Saos-2 osteoblast-like cells (OBs) and THP-1-derived osteoclast-like cells (OCs) were co-cultured on the scaffolds, and cell proliferation was assessed using the MTS assay. The amount of double-stranded DNA (dsDNA) was quantified to evaluate cell proliferation. Expression levels of OBs and OCs markers were analyzed via quantitative polymerase chain reaction (qPCR) and the production of Collagen type I was visualized using confocal microscopy. Additionally, enzymatic activity of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP or ACP5) was measured to assess OB and OC function, respectively. Interestingly, despite the scaffold’s structured character supporting the growth of the Saos-2 OBs and THP-1-derived OCs coculture, the incorporation of HANPs did not significantly enhance cellular responses compared to scaffolds without HANPs, except for collagen type I production. These findings suggest the need for further investigation into the potential benefits of HANPs in bone tissue engineering applications. Nevertheless, our study contributes valuable insights into optimizing biomaterial design for bone tissue regeneration, with implications for drug screening and material testing protocols. Full article
Show Figures

Figure 1

19 pages, 2429 KiB  
Review
Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans
by Heinz Peter Nasheuer and Anna Marie Meaney
Genes 2024, 15(3), 360; https://doi.org/10.3390/genes15030360 - 14 Mar 2024
Cited by 4 | Viewed by 8281
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking [...] Read more.
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45–MCM2-7–GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, “replication stress” events, via ATR (ATM–Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells’ genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review “Hallmarks of Cancer: New Dimensions”, Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review. Full article
(This article belongs to the Special Issue Mechanisms and Regulation of Human DNA Replication)
Show Figures

Figure 1

14 pages, 857 KiB  
Review
Association of Mutations in Replicative DNA Polymerase Genes with Human Disease: Possible Application of Drosophila Models for Studies
by Masamitsu Yamaguchi and Sue Cotterill
Int. J. Mol. Sci. 2023, 24(9), 8078; https://doi.org/10.3390/ijms24098078 - 29 Apr 2023
Cited by 2 | Viewed by 2664
Abstract
Replicative DNA polymerases, such as DNA polymerase α-primase, δ and ε, are multi-subunit complexes that are responsible for the bulk of nuclear DNA replication during the S phase. Over the last decade, extensive genome-wide association studies and expression profiling studies of the replicative [...] Read more.
Replicative DNA polymerases, such as DNA polymerase α-primase, δ and ε, are multi-subunit complexes that are responsible for the bulk of nuclear DNA replication during the S phase. Over the last decade, extensive genome-wide association studies and expression profiling studies of the replicative DNA polymerase genes in human patients have revealed a link between the replicative DNA polymerase genes and various human diseases and disorders including cancer, intellectual disability, microcephalic primordial dwarfism and immunodeficiency. These studies suggest the importance of dissecting the mechanisms involved in the functioning of replicative DNA polymerases in understanding and treating a range of human diseases. Previous studies in Drosophila have established this organism as a useful model to understand a variety of human diseases. Here, we review the studies on Drosophila that explored the link between DNA polymerases and human disease. First, we summarize the recent studies linking replicative DNA polymerases to various human diseases and disorders. We then review studies on replicative DNA polymerases in Drosophila. Finally, we suggest the possible use of Drosophila models to study human diseases and disorders associated with replicative DNA polymerases. Full article
(This article belongs to the Special Issue Role of Drosophila in Human Disease Research 3.0)
Show Figures

Figure 1

24 pages, 2908 KiB  
Article
Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase—Pol ε Interaction
by Milena Denkiewicz-Kruk, Malgorzata Jedrychowska, Shizuko Endo, Hiroyuki Araki, Piotr Jonczyk, Michal Dmowski and Iwona J. Fijalkowska
Int. J. Mol. Sci. 2020, 21(24), 9484; https://doi.org/10.3390/ijms21249484 - 13 Dec 2020
Cited by 7 | Viewed by 3881
Abstract
The CMG complex (Cdc45, Mcm2–7, GINS (Psf1, 2, 3, and Sld5)) is crucial for both DNA replication initiation and fork progression. The CMG helicase interaction with the leading strand DNA polymerase epsilon (Pol ε) is essential for the preferential loading of Pol ε [...] Read more.
The CMG complex (Cdc45, Mcm2–7, GINS (Psf1, 2, 3, and Sld5)) is crucial for both DNA replication initiation and fork progression. The CMG helicase interaction with the leading strand DNA polymerase epsilon (Pol ε) is essential for the preferential loading of Pol ε onto the leading strand, the stimulation of the polymerase, and the modulation of helicase activity. Here, we analyze the consequences of impaired interaction between Pol ε and GINS in Saccharomyces cerevisiae cells with the psf1-100 mutation. This significantly affects DNA replication activity measured in vitro, while in vivo, the psf1-100 mutation reduces replication fidelity by increasing slippage of Pol ε, which manifests as an elevated number of frameshifts. It also increases the occurrence of single-stranded DNA (ssDNA) gaps and the demand for homologous recombination. The psf1-100 mutant shows elevated recombination rates and synthetic lethality with rad52Δ. Additionally, we observe increased participation of DNA polymerase zeta (Pol ζ) in DNA synthesis. We conclude that the impaired interaction between GINS and Pol ε requires enhanced involvement of error-prone Pol ζ, and increased participation of recombination as a rescue mechanism for recovery of impaired replication forks. Full article
(This article belongs to the Special Issue Genome Maintenance and Cancer)
Show Figures

Figure 1

20 pages, 2229 KiB  
Review
DNA Polymerases at the Eukaryotic Replication Fork Thirty Years after: Connection to Cancer
by Youri I. Pavlov, Anna S. Zhuk and Elena I. Stepchenkova
Cancers 2020, 12(12), 3489; https://doi.org/10.3390/cancers12123489 - 24 Nov 2020
Cited by 14 | Viewed by 4610 | Correction
Abstract
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication [...] Read more.
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named “division of labor,” remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants’ effects on cancer. Full article
(This article belongs to the Special Issue The Study of Cancer Susceptibility Genes)
Show Figures

Figure 1

14 pages, 2834 KiB  
Article
3,7-Dihydroxytropolones Inhibit Initiation of Hepatitis B Virus Minus-Strand DNA Synthesis
by Ellen Bak, Jennifer T. Miller, Andrea Noronha, John Tavis, Emilio Gallicchio, Ryan P. Murelli and Stuart F. J. Le Grice
Molecules 2020, 25(19), 4434; https://doi.org/10.3390/molecules25194434 - 27 Sep 2020
Cited by 11 | Viewed by 3754
Abstract
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5’ terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of [...] Read more.
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5’ terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis. However, since initiation of HBV (-) strand DNA synthesis occurs within a complex of viral and host components (e.g., Hsp90, DDX3 and APOBEC3G), we considered an alternative therapeutic strategy of allosteric inhibition by disrupting the initiation complex or modifying its topology. To this end, we show here that 3,7-dihydroxytropolones (3,7-dHTs) can inhibit HBV protein-primed DNA synthesis. Since DNA polymerase activity of a ribonuclease (RNase H)-deficient HBV reverse transcriptase that otherwise retains DNA polymerase function is also abrogated, this eliminates direct involvement of RNase (ribonuclease) H activity of HBV reverse transcriptase and supports the notion that the HBV initiation complex might be therapeutically targeted. Modeling studies also provide a rationale for preferential activity of 3,7-dHTs over structurally related α-hydroxytropolones (α-HTs). Full article
(This article belongs to the Special Issue RNA: Still an Under-Exploited Drug Target)
Show Figures

Figure 1

25 pages, 3796 KiB  
Review
Plant DNA Polymerases
by Jose-Antonio Pedroza-Garcia, Lieven De Veylder and Cécile Raynaud
Int. J. Mol. Sci. 2019, 20(19), 4814; https://doi.org/10.3390/ijms20194814 - 27 Sep 2019
Cited by 19 | Viewed by 6672
Abstract
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess [...] Read more.
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication. These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number of specialized polymerases (between five and 16 depending on the organism) that are involved in the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years, our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes. We also discuss the emerging links between genome and epigenome replication. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Plants)
Show Figures

Figure 1

14 pages, 2522 KiB  
Article
The HPV E2 Transcriptional Transactivation Protein Stimulates Cellular DNA Polymerase Epsilon
by Michaelle Chojnacki and Thomas Melendy
Viruses 2018, 10(6), 321; https://doi.org/10.3390/v10060321 - 12 Jun 2018
Cited by 9 | Viewed by 3848
Abstract
The papillomavirus (PV) protein E2 is one of only two proteins required for viral DNA replication. E2 is the viral transcriptional regulator/activation protein as well as the initiator of viral DNA replication. E2 is known to interact with various cellular DNA replication proteins, [...] Read more.
The papillomavirus (PV) protein E2 is one of only two proteins required for viral DNA replication. E2 is the viral transcriptional regulator/activation protein as well as the initiator of viral DNA replication. E2 is known to interact with various cellular DNA replication proteins, including the PV E1 protein, the cellular ssDNA binding complex (RPA), and topoisomerase I. Recently, we observed that cellular DNA polymerase ε (pol ε) interacts with the PV helicase protein, E1. E1 stimulates its activity with a very high degree of specificity, implicating pol ε in PV DNA replication. In this paper, we evaluated whether E2 also shows a functional interaction with pol ε. We found that E2 stimulates the DNA synthesis activity of pol ε, independently of pol ε’ s processivity factors, RFC, PCNA, and RPA, or E1. This appears to be specific for pol ε, as cellular DNA polymerase δ is unaffected by E1. However, unlike other known stimulatory factors of pol ε, E2 does not affect the processivity of pol ε. The domains of E2 were analyzed individually and in combination for their ability to stimulate pol ε. Both the transactivation and hinge domains were found to be important for this stimulation, while the E2 DNA-binding domain was dispensable. These findings support a role for E2 beyond E1 recruitment in viral DNA replication, demonstrate a novel functional interaction in PV DNA replication, and further implicate cellular pol ε in PV DNA replication. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 279 KiB  
Article
3-O-Methylfunicone, a Selective Inhibitor of Mammalian Y-Family DNA Polymerases from an Australian Sea Salt Fungal Strain
by Yoshiyuki Mizushina, Hirohisa Motoshima, Yasuhiro Yamaguchi, Toshifumi Takeuchi, Ken Hirano, Fumio Sugawara and Hiromi Yoshida
Mar. Drugs 2009, 7(4), 624-639; https://doi.org/10.3390/md7040624 - 23 Nov 2009
Cited by 41 | Viewed by 14312
Abstract
We isolated a pol inhibitor from the cultured mycelia extract of a fungal strain isolated from natural salt from a sea salt pan in Australia, which was identified as 3-O-methylfunicone by spectroscopic analyses. This compound selectively inhibited the activities of mammalian Y-family DNA [...] Read more.
We isolated a pol inhibitor from the cultured mycelia extract of a fungal strain isolated from natural salt from a sea salt pan in Australia, which was identified as 3-O-methylfunicone by spectroscopic analyses. This compound selectively inhibited the activities of mammalian Y-family DNA polymerases (pols) (i.e., pols η, ι and κ). Among these pols, human pol κ activity was most strongly inhibited, with an IC50 value of 12.5 μM. On the other hand, the compound barely influenced the activities of the other families of mammalian pols, such as A-family (i.e., pol γ), B-family (i.e., pols α, δ and ε) or X-family (i.e., pols β, λ and terminal deoxynucleotidyl transferase), and showed no effect on the activities of fish pol δ, plant pols, prokaryotic pols and other DNA metabolic enzymes, such as calf primase of pol α, human immunodeficiency virus type-1 (HIV-1) reverse transcriptase, human telomerase, T7 RNA polymerase, mouse IMP dehydrogenase (type II), human topoisomerases I and II, T4 polynucleotide kinase or bovine deoxyribonuclease I. This compound also suppressed the growth of two cultured human cancer cell lines, HCT116 (colon carcinoma cells) and HeLa (cervix carcinoma cells), and UV-treated HeLa cells exhibited lower clonogenic survival in the presence of inhibitor. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Microbes)
Show Figures

Graphical abstract

Back to TopTop