Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = DC-DC synchronous ZETA converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1659 KiB  
Article
Optimized Energy Management System for Wind Lens-Enhanced PMSG Utilizing Zeta Converter and Advanced MPPT Control Strategies
by Arun Selvaraj and Ganesh Mayilsamy
Wind 2024, 4(4), 275-287; https://doi.org/10.3390/wind4040014 - 2 Oct 2024
Cited by 2 | Viewed by 1525
Abstract
This paper presents the design and analysis of an efficient energy management system for a wind lens integrated with a permanent magnet synchronous generator (PMSG) and a zeta converter. The wind lens, a ring-shaped structure encircling the rotor, enhances the turbine’s capability to [...] Read more.
This paper presents the design and analysis of an efficient energy management system for a wind lens integrated with a permanent magnet synchronous generator (PMSG) and a zeta converter. The wind lens, a ring-shaped structure encircling the rotor, enhances the turbine’s capability to capture wind energy by increasing the wind influx through the turbine. In the contemporary wind energy sector, PMSGs are extensively employed due to their superior performance characteristics. This study integrates a 1 kW PMSG system with a wind lens to optimize power extraction from the wind energy conversion system (WECS) under varying wind speeds. A comparative analysis of different control strategies for maximum power point tracking (MPPT) is conducted, including the incremental conductance (INC) method and the perturb and observe (P&O) method. The performance of the MPPT controller integrated with the wind lens-based PMSG system is assessed based on output DC voltage and power delivered to the load. To evaluate the overall effectiveness of these control strategies, both steady-state voltage and dynamic response under diverse wind conditions are examined. The system is modeled and simulated using the MATLAB R2023a/Simulink 9.1 software, and the simulation results are validated to demonstrate the efficacy of the proposed energy management system. Full article
Show Figures

Figure 1

18 pages, 5333 KiB  
Article
A New Smart Grid Hybrid DC–DC Converter with Improved Voltage Gain and Synchronized Multiple Outputs
by Khaled A. Mahafzah, Mohammad A. Obeidat, Ayman Mansour, Eleonora Riva Sanseverino and Gaetano Zizzo
Appl. Sci. 2024, 14(6), 2274; https://doi.org/10.3390/app14062274 - 8 Mar 2024
Cited by 9 | Viewed by 2046
Abstract
This paper introduces a new hybrid DC–DC converter with enhanced voltage gain and synchronized multiple output capabilities, specifically tailored for smart grid applications. The proposed converter is based on the integration of non-isolated Zeta and Mahafzah converters, comprising a single controlled switch, two [...] Read more.
This paper introduces a new hybrid DC–DC converter with enhanced voltage gain and synchronized multiple output capabilities, specifically tailored for smart grid applications. The proposed converter is based on the integration of non-isolated Zeta and Mahafzah converters, comprising a single controlled switch, two diodes, three inductors, and two coupling capacitors. The primary objective of this novel hybrid converter is to improve voltage gain as compared to conventional Zeta and Mahafzah topologies. By achieving higher voltage gain at lower duty cycles, the converter effectively reduces voltage stress on semiconductor switches and output diodes, thereby enhancing overall performance and reliability. A comprehensive examination of the hybrid converter’s operating principle is presented, along with detailed calculations of duty cycle and switching losses. The paper also explores the converter’s application in smart grids, specifically in the context of renewable energy systems and electric vehicles. Two distinct scenarios are analyzed to evaluate the converter’s efficacy. Firstly, the converter is assessed as a DC–DC converter for renewable energy systems, highlighting its relevance in sustainable energy applications. Secondly, the converter is evaluated as an electric vehicle adapter, showcasing its potential in the transportation sector. To validate the converter’s performance, extensive simulations are carried out using MATLAB/SIMULINK with parameters set at 25 kW, 200 V, and 130 A. The simulation results demonstrate the converter’s ability to efficiently supply multiple loads with opposing energy flows, making it a promising technology for optimized grid management and energy distribution. Moreover, the paper investigates the total harmonic distortion (THD) of the grid current, focusing on its impact in smart grid environments. Notably, the new hybrid converter topology achieves a THD of 21.11% for the grid current, indicating its ability to effectively mitigate harmonics and improve power quality. Overall, this research introduces a cutting-edge hybrid DC–DC converter that enhances voltage gain and synchronizes multiple outputs, specifically catering to the requirements of smart grid applications. The findings underscore the converter’s potential to significantly contribute to the advancement of efficient and resilient power conversion technologies for smart grids, enabling seamless integration of renewable energy systems and electric vehicles into the grid. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

18 pages, 3558 KiB  
Article
DC-DC Zeta Power Converter: Ramp Compensation Control Design and Stability Analysis
by David Angulo-García, Fabiola Angulo and Juan-Guillermo Muñoz
Appl. Sci. 2021, 11(13), 5946; https://doi.org/10.3390/app11135946 - 26 Jun 2021
Cited by 10 | Viewed by 3476
Abstract
The design of robust and reliable power converters is fundamental in the incorporation of novel power systems. In this paper, we perform a detailed theoretical analysis of a synchronous ZETA converter controlled via peak-current with ramp compensation. The controller is designed to guarantee [...] Read more.
The design of robust and reliable power converters is fundamental in the incorporation of novel power systems. In this paper, we perform a detailed theoretical analysis of a synchronous ZETA converter controlled via peak-current with ramp compensation. The controller is designed to guarantee a stable Period 1 orbit with low steady state error at different values of input and reference voltages. The stability of the desired Period 1 orbit of the converter is studied in terms of the Floquet multipliers of the solution. We show that the control strategy is stable over a wide range of parameters, and it only loses stability: (i) when extreme values of the duty cycle are required; and (ii) when input and reference voltages are comparable but small. We also show by means of bifurcation diagrams and Lyapunov exponents that the Period 1 orbit loses stability through a period doubling mechanism and transits to chaos when the duty cycle saturates. We finally present numerical experiments to show that the ramp compensation control is robust to a large set of perturbations. Full article
(This article belongs to the Special Issue Research and Development on DC-DC Power Converters)
Show Figures

Figure 1

Back to TopTop