Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = CuZn40-WC powders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3694 KiB  
Review
Electrical Discharge Machining Non-Conductive Ceramics: Combination of Materials
by Marina A. Volosova, Anna A. Okunkova, Sergey V. Fedorov, Khaled Hamdy and Mariya A. Mikhailova
Technologies 2020, 8(2), 32; https://doi.org/10.3390/technologies8020032 - 28 May 2020
Cited by 36 | Viewed by 8062
Abstract
One of the promising processing methods for non-conductive structural and functional ceramics based on ZrO2, Al2O3, and Si3N4 systems is electrical discharge machining with the assistance of an auxiliary electrode that can be presented [...] Read more.
One of the promising processing methods for non-conductive structural and functional ceramics based on ZrO2, Al2O3, and Si3N4 systems is electrical discharge machining with the assistance of an auxiliary electrode that can be presented in the form of conductive films with a thickness up to 4–10 µm or nanoparticles - granules, tubes, platelets, multidimensional particles added in the working zone as a free poured powder the proper concentration of which can be provided by ultrasound emission or by dielectric flows or as conductive additives in the structure of nanocomposites. However, the described experimental approaches did not reach the production market and industry. It is related mostly to the chaotic development of the knowledge and non-systematized data in the field when researchers often cannot ground their choice of the material for auxiliary electrodes, assisting powders, or nano additives or they cannot explain the nature of processes that were observed in the working tank during experiments when their results are not correlated to the measured specific electrical conductivity of the electrodes, particles, ceramic workpieces or nanocomposites but depends on something else. The proposed review includes data on the main electrophysical and chemical properties of the components in the presence of heat when the temperature in the interelectrode gap reaches 10,000 °C, and the systematization of data on ceramic pressing methods, including spark plasma sintering, the chemical reactions that occur in the interelectrode gap during sublimation of primary (brass and copper) and auxiliary electrodes made of transition metals Ti, Cr, Co, and carbon, auxiliary electrodes made of metals with low melting point Zn, Ag, Au, Al, assisting powder of oxide ceramics TiO2, CeO2, SnO2, ITO, conductive additives Cu, W, TiC, WC, and components of Al2O3 and Zr2O workpieces in interaction with the dielectric fluid - water and oil/kerosene medium. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Graphical abstract

13 pages, 6782 KiB  
Article
Microstructure and Properties of Cladding Layers Prepared by Argon-Shielded Arc Cladding of CuZn40-WC Powders on Pure Aluminum Substrate
by Xinge Zhang, Qing Sang, Zhenan Ren and Guofa Li
Coatings 2018, 8(11), 382; https://doi.org/10.3390/coatings8110382 - 27 Oct 2018
Cited by 5 | Viewed by 3406
Abstract
Aluminum and aluminum alloys have the advantage of a high strength-to-weight ratio, but their low hardness and poor wear resistance often cause wear damage. In the present study, the cladding layer was prepared using argon-shielded arc cladding of CuZn40-WC powders which were pre-coated [...] Read more.
Aluminum and aluminum alloys have the advantage of a high strength-to-weight ratio, but their low hardness and poor wear resistance often cause wear damage. In the present study, the cladding layer was prepared using argon-shielded arc cladding of CuZn40-WC powders which were pre-coated on a pure aluminum substrate. The effects of WC proportion on the morphology, microstructure, and properties of cladding layers were investigated in detail. The results indicated that the optimal WC proportion in CuZn40-WC powders was 60 wt.%. With the increase of WC proportion, although the morphology of the cladding layer became slightly worse, the surface quality of the cladding layer was acceptable for industrial application until the WC proportion was 80 wt.%. Meanwhile, the top width and maximum depth of the cladding layer decreased. The maximum microhardness and optimal wear resistance of the cladding layer were 4.5 and 2.5 times that of the aluminum substrate, respectively. The increased microhardness and wear resistance were mainly attributed to the formation of Al4W in the cladding layer. The wear scar of the high wear resistance specimen was smoother and some bulk Al4W compounds were clearly observed on the wear surface. Full article
Show Figures

Figure 1

Back to TopTop