Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Crete system faults

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11833 KB  
Article
Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System
by Enzo Mantovani, Marcello Viti, Daniele Babbucci, Caterina Tamburelli, Massimo Baglione and Vittorio D’Intinosante
Geosciences 2024, 14(10), 277; https://doi.org/10.3390/geosciences14100277 - 19 Oct 2024
Cited by 4 | Viewed by 2261
Abstract
It is hypothesized that the present tectonic setting of the Anatolian, Aegean and Balkan regions has been deeply influenced by the different deformation styles of the inner and outer belts which constituted the Oligocene Tethyan system. Stressed by the Arabian indenter, this buoyant [...] Read more.
It is hypothesized that the present tectonic setting of the Anatolian, Aegean and Balkan regions has been deeply influenced by the different deformation styles of the inner and outer belts which constituted the Oligocene Tethyan system. Stressed by the Arabian indenter, this buoyant structure has undergone a westward escape and strong bending. The available evidence suggests that in the Plio–Pleistocene time frame, the inner metamorphic core mainly deformed without undergoing major fragmentations, whereas the orogenic belts which flanked that core (Pontides, Balkanides, Dinarides and Hellenides) behaved as mainly brittle structures, undergoing marked fractures and fragmentations. This view can plausibly explain the formation of the Eastern (Crete–Rhodes) and Western (Peloponnesus) Hellenic Arcs, the peculiar time-space features of the Cretan basins, the development of the Cyprus Arc, the North Aegean strike-slip fault system, the southward escapes of the Antalya and Peloponnesus wedges and the complex tectonic setting in the Balkan zone. These tectonic processes have mostly developed since the late Late Miocene, in response to the collision of the Tethyan belt with the Adriatic continental domain, which accelerated the southward bending of the Anatolian and Aegean sectors, at the expense of the Levantine and Ionian oceanic domains. The proposed interpretation may help us to understand the connection between the ongoing tectonic processes and the spatio-temporal distribution of major earthquakes, increasing the chances of estimating the long-term seismic hazard in the study area. In particular, it is suggested that seismic activity in the Serbo–Macedonian zone may be favored by the post-seismic relaxation that develops after seismic crises in the Epirus thrust front and inhibited/delayed by the activations of the North Anatolian fault system. Full article
Show Figures

Figure 1

13 pages, 14450 KB  
Article
Earthquake Nowcasting: Retrospective Testing in Greece
by Gerasimos Chouliaras, Efthimios S. Skordas and Nicholas V. Sarlis
Entropy 2023, 25(2), 379; https://doi.org/10.3390/e25020379 - 19 Feb 2023
Cited by 10 | Viewed by 8632
Abstract
Earthquake nowcasting (EN) is a modern method of estimating seismic risk by evaluating the progress of the earthquake (EQ) cycle in fault systems. EN evaluation is based on a new concept of time, termed ’natural time’. EN employs natural time, and uniquely estimates [...] Read more.
Earthquake nowcasting (EN) is a modern method of estimating seismic risk by evaluating the progress of the earthquake (EQ) cycle in fault systems. EN evaluation is based on a new concept of time, termed ’natural time’. EN employs natural time, and uniquely estimates seismic risk by means of the earthquake potential score (EPS), which has been found to have useful applications both regionally and globally. Amongst these applications, here we focused on Greece since 2019, for the estimation of the EPS for the largest-magnitude events, MW(USGS) ≥ 6, that occurred during our study period: for example, the MW= 6.0 WNW-of-Kissamos EQ on 27 November 2019, the MW= 6.5 off-shore Southern Crete EQ on 2 May 2020, the MW= 7.0 Samos EQ on 30 October 2020, the MW= 6.3 Tyrnavos EQ on 3 March 2021, the MW= 6.0 Arkalohorion Crete EQ on 27 September 2021, and the MW= 6.4 Sitia Crete EQ on 12 October 2021. The results are promising, and reveal that the EPS provides useful information on impending seismicity. Full article
Show Figures

Figure 1

19 pages, 11963 KB  
Article
The 2021 Greece Central Crete ML 5.8 Earthquake: An Example of Coalescent Fault Segments Reconstructed from InSAR and GNSS Data
by Nicola Angelo Famiglietti, Zeinab Golshadi, Filippos Vallianatos, Riccardo Caputo, Maria Kouli, Vassilis Sakkas, Simone Atzori, Raffaele Moschillo, Gianpaolo Cecere, Ciriaco D’Ambrosio and Annamaria Vicari
Remote Sens. 2022, 14(22), 5783; https://doi.org/10.3390/rs14225783 - 16 Nov 2022
Cited by 5 | Viewed by 3230
Abstract
The ML 5.8 earthquake that hit the island of Crete on 27 September 2021 is analysed with InSAR (Interferometry from Synthetic Aperture Radar) and GNSS (Global Navigation Satellite System) data. The purpose of this work is to create a model with sufficient [...] Read more.
The ML 5.8 earthquake that hit the island of Crete on 27 September 2021 is analysed with InSAR (Interferometry from Synthetic Aperture Radar) and GNSS (Global Navigation Satellite System) data. The purpose of this work is to create a model with sufficient detail for the geophysical processes that take place in several kilometres below the earth’s surface and improve our ability to observe active tectonic processes using geodetic and seismic data. InSAR coseismic displacements maps show negative values along the LOS of ~18 cm for the ascending orbit and ~20 cm for the descending one. Similarly, the GNSS data of three permanent stations were used in PPK (Post Processing Kinematic) mode to (i) estimate the coseismic shifts, highlighting the same range of values as the InSAR, (ii) model the deformation of the ground associated with the main shock, and (iii) validate InSAR results by combining GNSS and InSAR data. This allowed us to constrain the geometric characteristics of the seismogenic fault and the slip distribution on it. Our model, which stands on a joint inversion of the InSAR and GNSS data, highlights a major rupture surface striking 214°, dipping 50° NW and extending at depth from 2.5 km down to 12 km. The kinematics is almost dip-slip normal (rake −106°), while a maximum slip of ~1.0 m occurred at a depth of ca. 6 km. The crucial though indirect role of inherited tectonic structures affecting the seismogenic crustal volume is also discussed suggesting their influence on the surrounding stress field and their capacity to dynamically merge distinct fault segments. Full article
Show Figures

Graphical abstract

24 pages, 11419 KB  
Article
The 27 September 2021 Earthquake in Central Crete (Greece)—Detailed Analysis of the Earthquake Sequence and Indications for Contemporary Arc-Parallel Extension to the Hellenic Arc
by Emmanuel Vassilakis, George Kaviris, Vasilis Kapetanidis, Elena Papageorgiou, Michael Foumelis, Aliki Konsolaki, Stelios Petrakis, Christos P. Evangelidis, John Alexopoulos, Vassilios Karastathis, Nicholas Voulgaris and Gerassimos-Akis Tselentis
Appl. Sci. 2022, 12(6), 2815; https://doi.org/10.3390/app12062815 - 9 Mar 2022
Cited by 20 | Viewed by 6265
Abstract
The Arkalochori village in central Crete was hit by a large earthquake (Mw = 6.0) on 27 September 2021, causing casualties, injuries, and severe damage to the infrastructure. Due to the absence of apparent surface rupture and the initial focal mechanism [...] Read more.
The Arkalochori village in central Crete was hit by a large earthquake (Mw = 6.0) on 27 September 2021, causing casualties, injuries, and severe damage to the infrastructure. Due to the absence of apparent surface rupture and the initial focal mechanism solution of the seismic event, we initiated complementary, multi-disciplinary research by combining seismological and remote sensing data processing, followed by extensive field validation. Detailed geological mapping, fault surface measuring accompanied with tectonic analysis, fault photorealistic model creation by unmanned aerial system data processing, post-seismic surface deformation analysis by DInSAR image interpretation coupled with accurately relocated epicenters recorded by locally established seismographs have been carried out. The combination of the results obtained from these techniques led to the determination of the contemporary tectonic stress regime that caused the earthquake in central Crete, which was found compatible with extensional processes parallel to the Hellenic arc. Full article
(This article belongs to the Special Issue Mapping, Monitoring and Assessing Disasters)
Show Figures

Figure 1

Back to TopTop