Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Constant Air Volume single duct system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3207 KiB  
Article
Assessment of Indoor Thermo-Hygrometric Conditions and Energy Demands Associated to Filters and Dampers Faults via Experimental Tests of a Typical Air-Handling Unit During Summer and Winter in Southern Italy
by Antonio Rosato, Mohammad El Youssef, Rita Mercuri, Armin Hooman, Marco Savino Piscitelli and Alfonso Capozzoli
Energies 2025, 18(3), 618; https://doi.org/10.3390/en18030618 - 29 Jan 2025
Cited by 1 | Viewed by 776
Abstract
Faults of heating, ventilation, and air-conditioning (HVAC) systems can cause significant consequences, such as negatively affecting thermal comfort of occupants, energy demand, indoor air quality, etc. Several methods of fault detection and diagnosis (FDD) in building energy systems have been proposed since the [...] Read more.
Faults of heating, ventilation, and air-conditioning (HVAC) systems can cause significant consequences, such as negatively affecting thermal comfort of occupants, energy demand, indoor air quality, etc. Several methods of fault detection and diagnosis (FDD) in building energy systems have been proposed since the late 1980s in order to reduce the consequences of faults in heating, ventilation, and air-conditioning (HVAC) systems. All the proposed FDD methods require laboratory data, or simulated data, or field data. Furthermore, the majority of the recently proposed FDD methods require labelled faulty and normal data to be developed. Thus, providing reliable ground truth data of HVAC systems with different technical characteristics is of great importance for advances in FDD methods for HVAC units. The primary objective of this study is to examine the operational behaviour of a typical single-duct dual-fan constant air volume air-handling unit (AHU) in both faulty and fault-free conditions. The investigation encompasses a series of experiments conducted under Mediterranean climatic conditions in southern Italy during summer and winter. This study investigates the performance of the AHU by artificially introducing seven distinct typical faults: (1) return air damper kept always closed (stuck at 0%); (2) fresh air damper kept always closed (stuck at 0%); (3) fresh air damper kept always opened (stuck at 100%); (4) exhaust air damper kept always closed (stuck at 0%); (5) supply air filter partially clogged at 50%; (6) fresh air filter partially clogged at 50%; and (7) return air filter partially clogged at 50%. The collected data from the faulty scenarios are compared to the corresponding data obtained from fault-free performance measurements conducted under similar boundary conditions. Indoor thermo-hygrometric conditions, electrical power and energy consumption, operation time of AHU components, and all key operating parameters are measured for all the aforementioned faulty tests and their corresponding normal tests. In particular, the experimental results demonstrated that the exhaust air damper stuck at 0% significantly reduces the percentage of time with indoor air relative humidity kept within the defined deadbands by about 29% (together with a reduction in the percentage of time with indoor air temperature kept within the defined deadbands by 7.2%) and increases electric energy consumption by about 13% during winter. Moreover, the measured data underlined that the effects on electrical energy demand and indoor thermo-hygrometric conditions are minimal (with deviations not exceeding 5.6% during both summer and winter) in the cases of 50% clogging of supply air filter, fresh air filter, and return air filter. The results of this study can be exploited by researchers, facility managers, and building operators to better recognize root causes of faulty evidences in AHUs and also to develop and test new FDD tools. Full article
Show Figures

Figure 1

18 pages, 4467 KiB  
Article
Development of Economizer Control Method with Variable Mixed Air Temperature
by Jin-Hyun Lee, Yong-Shik Kim, Jae-Hun Jo, Hyun Cho and Young-Hum Cho
Energies 2018, 11(9), 2445; https://doi.org/10.3390/en11092445 - 14 Sep 2018
Cited by 8 | Viewed by 3445
Abstract
Achieving energy efficiency by improving the operating method of the system used in existing buildings is attracting considerable attention. The Building Design Criteria for Energy Saving was established to induce energy saving design in the domestic construction field, and the introduction of a [...] Read more.
Achieving energy efficiency by improving the operating method of the system used in existing buildings is attracting considerable attention. The Building Design Criteria for Energy Saving was established to induce energy saving design in the domestic construction field, and the introduction of a free-cooling system, such as an economizer system, as an item of the mechanical sector, was evaluated. The economizer is an energy saving method that reduces the building load by introducing outdoor air through damper control according to the indoor and outdoor conditions. The system consists of dry-bulb temperature control and enthalpy control and the mixed air temperature is kept constant in the conventional economizer controls. On the other hand, in dry-bulb temperature control, when the set value of the mixed air temperature is changed according to the load, additional energy savings are expected compared to the conventional control method. Therefore, this paper proposes an economizer control that makes the mixed air temperature variable according to the load in a Constant Air Volume single duct system. For this, a load prediction is needed and an Artificial Neural Network is used for the load prediction. In addition, the relationship between the mixed air temperature and energy were analyzed using the BIN method and TRNSYS 17. Based on the results of previous analysis, a control method which predicting the load using Artificial Neural Network and controlling the mixed air temperature according to the predicted load in the dry-bulb temperature control of a Constant Air Volume single duct system is proposed and the proposed control was applied to the dynamic simulation program and compared with the conventional control. The results show that the temperature of each room was 21–23 °C in summer and 22.5–26 °C in winter when the economizer was controlled using the proposed control method and the energy consumption analysis showed that 19% of the energy was reduced compared to the conventional method when the proposed method was controlled. Full article
Show Figures

Figure 1

22 pages, 763 KiB  
Article
Development of a Terminal Control System with Variable Minimum Airflow Rate
by Young-Hum Cho
Energies 2012, 5(11), 4643-4664; https://doi.org/10.3390/en5114643 - 15 Nov 2012
Cited by 8 | Viewed by 6907
Abstract
A constant minimum airflow rate is used in conventional Single Duct Variable Air Volume Terminal Box control sequences. This control sequence can cause occupant discomfort or use excessive energy under partial load conditions. If the minimum airflow rate is higher than required; terminal [...] Read more.
A constant minimum airflow rate is used in conventional Single Duct Variable Air Volume Terminal Box control sequences. This control sequence can cause occupant discomfort or use excessive energy under partial load conditions. If the minimum airflow rate is higher than required; terminal boxes will have significantly more simultaneous heating and cooling; and AHUs will consume more fan power. Buildings will have indoor air quality problems if the minimum airflow rate is less than required. Many engineers and researchers have investigated advanced variable air volume terminal box control algorithms without a system retrofit for thermal comfort; indoor air quality and energy savings. In this study a developed control system with variable minimum airflow rate for Single Duct Variable Air Volume Terminal Boxes was applied and validated using an actual building and evaluated for comfort; indoor air quality and energy consumption. The energy consumption and thermal performance of terminal boxes using the conventional and proposed control algorithms were compared. Full article
(This article belongs to the Special Issue Energy Efficient Buildings and Green Buildings)
Show Figures

Figure 1

Back to TopTop