Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Clarias batrachus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 979 KB  
Article
Genetic Diversity and Selection of MHC I-UAA in Clariid Catfish from Thailand: Implications for Breeding and Conservation
by Ton Huu Duc Nguyen, Piangjai Chalermwong, Chananya Patta, Wattanawan Jaito, Worapong Singchat, Thitipong Panthum, Trifan Budi, Kednapat Sriphairoj, Sittichai Hatachote, Prapansak Srisapoome, Narongrit Muangmai, Darren K. Griffin, Agostinho Antunes, Prateep Duengkae and Kornsorn Srikulnath
Genes 2025, 16(9), 1106; https://doi.org/10.3390/genes16091106 - 18 Sep 2025
Viewed by 568
Abstract
Background/Objectives: Understanding variabilities in the Major Histocompatibility Complex class I (MHC I) gene is essential for evaluating immunogenetic diversity in clariid catfish. MHC I plays a critical role in immune defense by presenting endogenous antigens to cytotoxic T cells. Therefore, we [...] Read more.
Background/Objectives: Understanding variabilities in the Major Histocompatibility Complex class I (MHC I) gene is essential for evaluating immunogenetic diversity in clariid catfish. MHC I plays a critical role in immune defense by presenting endogenous antigens to cytotoxic T cells. Therefore, we aimed to investigate the genetic diversity, selection patterns, and phylogenetic relationships of MHC I alleles in three important clariid catfish species (Clarias gariepinus, Clarias macrocephalus, and Clarias batrachus) across wild and hatchery populations in Thailand. Methods: Targeted next-generation sequencing of a 174 bp fragment partial exon 6 of MHC I-UAA gene was performed, along with phylogenetic analyses, neutrality tests and dN/dS analyses. Results: Overall, 91 novel alleles were identified in 674 individuals, all of which were novel (100% novelty), with none matching existing reference sequences, thereby revealing extensive variation in population-specific variants. Phylogenetic analyses revealed allele sharing among species, which was consistent with balanced selection. Neutrality tests and dN/dS analyses provided evidence of both purifying and diversifying selection, with episodic positive selection detected at multiple codon sites associated with the antigen-binding α1 domain. Distinct selection patterns among populations, influenced by local environmental conditions and human pressures, along with high allele richness, are reflected in the diversity of immunogenetic variations. Conclusions: These findings provide critical insights into immune adaptation and highlight the potential of MHC I as a functional marker for genetic monitoring. Although a causal relationship between MHC I polymorphism and disease resistance is debated, studies suggest associations with pathogen survival, indicating future implications for aquaculture breeding and conservation, particularly in marker-assisted selection for broodstock management in Thailand. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3196 KB  
Article
Risk Screening of the Non-Native Fish in the Jiulong River Basin of Southeast China
by Shilong Feng, Xindong Pan, Jiaqiao Wang, Wenjuan Liu, Yapeng Hui, Guangzhao Wang, Kai Liu, Jun Li, Haoqi Xu, Lin Lin, Xu Wang, Zhiqiang Wu, Liangmin Huang and Fenfen Ji
Animals 2025, 15(4), 461; https://doi.org/10.3390/ani15040461 - 7 Feb 2025
Cited by 2 | Viewed by 1165
Abstract
Non-native fish species introduced into new areas, especially when they develop into large populations, pose a threat to native fauna. Understanding the current status of the fish community and invasion risks of non-native fish are essential for invasive species control and diversity conservation. [...] Read more.
Non-native fish species introduced into new areas, especially when they develop into large populations, pose a threat to native fauna. Understanding the current status of the fish community and invasion risks of non-native fish are essential for invasive species control and diversity conservation. The community structure of fish and a risk assessment on 10 non-native fish species were systematically assessed in the Jiulong River Basin, China, in January, April, and July of 2024. The species richness, with 105 species, showed a notable decrease compared to the 124 species recorded in 1975, while the number of non-native species has increased from zero to ten. Furthermore, the non-native fish species, Coptodon zillii and Sarotherodon galilaeus, have become dominant species, with IRI values of 4038.43 and 1180.30, respectively. The AS-ISK established risk thresholds for BRA and BRA + CCA as 29.5 and 35.5, respectively, identifying 70% of the non-native fish species as high-risk species, including C. zillii, S. galilaeus, Oreochromis niloticus, Clarias batrachus, Hypostomus plecostomus, and Oreochromis aureus. This study indicates that the fish species richness in the Jiulong River Basin has declined, with C. zillii and S. galilaeus becoming dominant and posing high ecological risks to the native fish community. In addition, targeted fishing during the breeding season should be used to control the population of tilapia and restore fish diversity. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

18 pages, 2949 KB  
Article
Mitochondriomics of Clarias Fishes (Siluriformes: Clariidae) with a New Assembly of Clarias camerunensis: Insights into the Genetic Characterization and Diversification
by Piyumi S. De Alwis, Shantanu Kundu, Fantong Zealous Gietbong, Muhammad Hilman Fu’adil Amin, Soo-Rin Lee, Hyun-Woo Kim and Ah Ran Kim
Life 2023, 13(2), 482; https://doi.org/10.3390/life13020482 - 9 Feb 2023
Cited by 11 | Viewed by 4218
Abstract
The mitogenome of an endemic catfish Clarias camerunensis was determined from the Cameroon water. This circular mitogenome was 16,511 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a single AT-rich control region. The heavy strand accommodates [...] Read more.
The mitogenome of an endemic catfish Clarias camerunensis was determined from the Cameroon water. This circular mitogenome was 16,511 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a single AT-rich control region. The heavy strand accommodates 28 genes, whereas the light strand is constituted by ND6 and eight transfer RNA (tRNA) genes. The C. camerunensis mitochondrial genome is AT biased (56.89%), as showcased in other Clarias species. The comparative analyses revealed that most of the Clarias species have 6 overlapping and 11 intergenic spacer regions. Most of the PCGs were initiated and terminated with the ATG start codon and TAA stop codon, respectively. The tRNAs of C. camerunensis folded into the distinctive cloverleaf secondary structure, except trnS1. The placement of the conserved domains in the control region was similar in all the Clarias species with highly variable nucleotides in CSB-I. Both maximum likelihood and Bayesian-based matrilineal phylogenies distinctly separated all Clarias species into five clades on the basis of their known distributions (South China, Sundaland, Indochina, India, and Africa). The TimeTree analysis revealed that the two major clades (Indo-Africa and Asia) of Clarias species might have diverged during the Paleogene (≈28.66 MYA). Our findings revealed the separation of Indian species (C. dussumieri) and African species (C. camerunensis and Clarias gariepinus) took place during the Paleogene, as well as the South Chinese species (Clarias fuscus) and Sundaland species (Clarias batrachus) splits from the Indochinese species (Clarias macrocephalus) during the Neogene through independent colonization. This pattern of biotic relationships highlights the influence of topography and geological events in determining the evolutionary history of Clarias species. The enrichment of mitogenomic data and multiple nuclear loci from their native range or type locality will confirm the true diversification of Clarias species in African and Asian countries. Full article
(This article belongs to the Special Issue Evolutionary and Conservation Genetics: 2nd Edition)
Show Figures

Figure 1

12 pages, 1780 KB  
Article
Invasion of African Clarias gariepinus Drives Genetic Erosion of the Indigenous C. batrachus in Bangladesh
by Imran Parvez, Rukaya Akter Rumi, Purnima Rani Ray, Mohammad Mahbubul Hassan, Shirin Sultana, Rubaiya Pervin, Suvit Suwanno and Siriporn Pradit
Biology 2022, 11(2), 252; https://doi.org/10.3390/biology11020252 - 6 Feb 2022
Cited by 12 | Viewed by 10093
Abstract
The African catfish Clarias gariepinus has been introduced for aquaculture in Bangladesh due to the scarcity of indigenous C. batrachus fingerlings. However, the government of Bangladesh has banned the farming of C. gariepinus due to the carnivorous nature of this species. Recently C. [...] Read more.
The African catfish Clarias gariepinus has been introduced for aquaculture in Bangladesh due to the scarcity of indigenous C. batrachus fingerlings. However, the government of Bangladesh has banned the farming of C. gariepinus due to the carnivorous nature of this species. Recently C. gariepinus has been reported by fish farmers and consumers in Bangladesh, and unplanned hybridization between native and exotic species has been suspected. This study attempts to know the purity of C. batrachus by analyzing mitochondrial genes. Both directly sequenced and retrieved Cytochrome C Oxidase subunit I (COI) and cytochrome b (Cytb) genes from C. gareipinus and C. batrachus were analyzed by MEGA software. The morphologically dissimilar C. batrachus showed the least genetic distance (0.295) from C. gariepinus, which provided evidence of hybridization between the two species. Maximum likelihood (ML) phylogenetic trees showed that C. batrachus from Bangladesh did not cluster with C. batrachus of other countries, instead C. batrachus clustered with the exotic C. gariepinus. The suspected hybrid formed sister taxa with the exotic C. gariepinus. The study corroborates the genetic deterioration of C. batrachus by unplanned hybridization with the invasive C. gariepinus. Unplanned hybridization has deleterious consequences; therefore, immediate action is necessary for aquaculture sustainability and biodiversity conservation in Bangladesh. Full article
Show Figures

Graphical abstract

20 pages, 2095 KB  
Article
Chronic Effects of Diazinon® Exposures Using Integrated Biomarker Responses in Freshwater Walking Catfish, Clarias batrachus
by Shubhajit Saha, Azubuike V. Chukwuka, Dip Mukherjee, Lipika Patnaik, Susri Nayak, Kishore Dhara, Nimai Chandra Saha and Caterina Faggio
Appl. Sci. 2021, 11(22), 10902; https://doi.org/10.3390/app112210902 - 18 Nov 2021
Cited by 56 | Viewed by 5298
Abstract
Diazinon exposures have been linked to the onset of toxic pathways and adverse outcomes in aquatic species, but the ecological implications on model species are not widely emphasized. The objective of this study was to determine how the organophosphate pesticide diazinon affected hematological [...] Read more.
Diazinon exposures have been linked to the onset of toxic pathways and adverse outcomes in aquatic species, but the ecological implications on model species are not widely emphasized. The objective of this study was to determine how the organophosphate pesticide diazinon affected hematological (hemoglobin, total red blood count, total white blood count, and mean corpuscular hemoglobin), growth (condition factor, hepatosomatic index, specific growth rate), biochemical (total serum glucose, total serum protein), and endocrine (growth hormone, tri-iodothyronine, and thyroxine) parameters in Clarias batrachus after chronic exposure. Diazinon was administered at predefined exposure doses (0.64 and 1.28 mg/L) and monitored at 15, 30, and 45 days into the investigation. Observation for most biomarkers revealed patterns of decreasing values with increasing toxicant concentration and exposure duration. Correlation analysis highlighted a significant inverse relationship between variables (mean corpuscular hemoglobin, condition factor, specific growth rate, tri-iodothyronine, thyroxine, and total serum protein) and elevated chronic diazinon exposure concentrations. The integrated indices (IBR and BRI) indexes were used to provide visual and understandable depictions of toxicity effects and emphasized the relativity of biomarkers in terms of sensitivity and magnitude or severity of responses under graded toxicant exposures. The significant damage reflected by evaluated parameters in diazinon exposure groups compared to control portends risks to the health of local fish populations, including Clarias batrachus in aquatic systems adjacent to agrarian landscapes. Full article
(This article belongs to the Special Issue Fate, Treatment and Impact of Natural and Synthetic Compounds)
Show Figures

Figure 1

12 pages, 1756 KB  
Article
Histological Study of Suprabranchial Chamber Membranes in Anabantoidei and Clariidae Fishes
by Dobrochna Adamek-Urbańska, Ewelina Błażewicz, Magdalena Sobień, Robert Kasprzak and Maciej Kamaszewski
Animals 2021, 11(4), 1158; https://doi.org/10.3390/ani11041158 - 17 Apr 2021
Cited by 10 | Viewed by 5496
Abstract
Accessory respiratory organs (AROs) are a group of anatomical structures found in fish, which support the gills and skin in the process of oxygen uptake. AROs are found in many fish taxa and differ significantly, but in the suborder Anabantoidei, which has a [...] Read more.
Accessory respiratory organs (AROs) are a group of anatomical structures found in fish, which support the gills and skin in the process of oxygen uptake. AROs are found in many fish taxa and differ significantly, but in the suborder Anabantoidei, which has a labyrinth organ (LO), and the family Clariidae, which has a dendritic organ (DO), these structures are found in the suprabranchial cavity (SBC). In this study, the SBC walls, AROs, and gills were studied in anabantoid (Betta splendens, Ctenopoma acutirostre, Helostoma temminckii) and clariid (Clarias angolensis, Clarias batrachus) fishes. The histological structure of the investigated organs was partially similar, especially in relation to their connective tissue core; however, there were noticeable differences in the epithelial layer. There were no significant species-specific differences in the structure of the AROs within the two taxa, but the SBC walls had diversified structures, depending on the observed location. The observed differences between species suggest that the remarkable physiological and morphological plasticity of the five investigated species can be associated with structural variety within their AROs. Furthermore, based on the observed histology of the SBC walls, it is reasonable to conclude that this structure participates in the process of gas exchange, not only in clariid fish but also in anabantoids. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

Back to TopTop