Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Chilean irrigated agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1825 KiB  
Article
Rainwater Harvesting for Well Recharge and Agricultural Irrigation: An Adaptation Strategy to Climate Change in Central Chile
by Pablo S. González, Robinson Sáez Lazo, Carlos Vallejos Carrera, Óscar Fernández Torres, Luis Bustos-Espinoza, Alfredo Ibáñez Córdova and Ben Ingram
Sustainability 2025, 17(8), 3549; https://doi.org/10.3390/su17083549 - 15 Apr 2025
Viewed by 1202
Abstract
Water scarcity in Chile, particularly in the Mediterranean region, has been exacerbated by prolonged drought and climate change. Rainwater harvesting systems (RHS) have emerged as viable solutions for addressing water shortages, particularly for agricultural irrigation and aquifer recharge. This study evaluated the implementation [...] Read more.
Water scarcity in Chile, particularly in the Mediterranean region, has been exacerbated by prolonged drought and climate change. Rainwater harvesting systems (RHS) have emerged as viable solutions for addressing water shortages, particularly for agricultural irrigation and aquifer recharge. This study evaluated the implementation and efficiency of RHS in rural areas of the Biobío Region, Chile, through the design and construction of two pilot systems in Arauco and Florida. These systems were assessed based on their water collection capacity, storage efficiency, and monitoring of water level variations in wells after rainwater incorporation, using depth probes to quantify stored volumes. The hydrological design incorporated site-specific precipitation analyses, runoff coefficients, and catchment area dimensions, estimating annual precipitation of 861 mm/year for Arauco and 611 mm/year for Florida. The RHS Arauco collected and stored 40 m3 of rainwater in a flexible tank, while RHS Florida stored 10 m3 in a polyethylene tank, demonstrating the effectiveness of the system. Additionally, we analyzed the economic feasibility and quality of harvested rainwater, ensuring its suitability for agricultural use according to Chilean regulations. The cost-effectiveness analysis indicated that the cost of stored water was $263.51 USD/m3 for Arauco and $841.07 USD/m3 for Florida, highlighting larger systems are more cost-effective owing to economies of scale. The Net Present Value (NPV) was calculated using a discount rate of 6% and a useful life of 10 years, yielding CLP $9,564,745 ($10,812.7 USD) for the Florida and CLP $2,216,616 ($2505.8 USD) for the Arauco site. The results indicate that both projects are financially viable and highly profitable, offering rapid payback periods and sustainable long-term benefits. RHS significantly contributes to water availability during the dry season, reducing dependence on conventional water sources and enhancing agricultural sustainability. Based on the evaluation of the cost–benefit, water availability, and infrastructure adaptability, we infer the feasibility of large-scale implementation at locations with similar characteristics. These findings support the role of RHS in sustainable water resource management and strengthening rural resilience to climate variability, highlighting their potential as an adaptation strategy to climate change in water-scarce Mediterranean regions. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

20 pages, 6256 KiB  
Article
Pressures and Challenges in Use and Management of Water in Rural Schools Affected by Drought in Valparaíso, Chile
by Nina Hormazabal, Paula Guerra-Pinto, Loreine Candia, María Córdova, María Ortiz and Javiera Silva
Water 2025, 17(7), 952; https://doi.org/10.3390/w17070952 - 25 Mar 2025
Viewed by 761
Abstract
Over 1350 Chilean rural schools are experiencing a lack of potable water, and 40.4% of them lack formal access to drinking water and have to resort to various alternative sources of supply, with 43% relying on wells or waterwheels, 32% using water trucks, [...] Read more.
Over 1350 Chilean rural schools are experiencing a lack of potable water, and 40.4% of them lack formal access to drinking water and have to resort to various alternative sources of supply, with 43% relying on wells or waterwheels, 32% using water trucks, and 26% relying on rivers, springs, or streams. Due to the extreme situation, most inhabitants of affected rural areas count on different means of water recycling, mainly reused from irrigation, without control or management of water quality. For this study, Los Bellotos de la Vega Elementary, a rural school, became a case study as proposed by the Municipality of Olmué. The educational program focuses on crops and plantations based on rural agricultural practices, which are irrigated by a water recycling system. Through microbiological water analysis, olfactory air quality testing, surveys, and photovoice methods, we identified serious problems with the implementation and management of the water recycling system, including a lack of resources and maintenance, which could endanger the health of the members of the community. An analysis of the treatment plant’s water revealed that the recycled water did not meet quality standards, and the water supplied by water trucks was at the limits of the standards. It was also found that all the families related to the school children recycle water in their homes without any control over the quality of the water they reuse. However, a positive aspect revealed by this study is the elevated level of awareness about water conservation, habits of use, consumption, rationing, and reuse, as well as knowledge of appropriate vegetation, and they are already part of daily life. Full article
Show Figures

Figure 1

18 pages, 8322 KiB  
Article
At Which Overpass Time Do ECOSTRESS Observations Best Align with Crop Health and Water Rights?
by Benjamin D. Goffin, Carlos Calvo Cortés-Monroy, Fernando Neira-Román, Diya D. Gupta and Venkataraman Lakshmi
Remote Sens. 2024, 16(17), 3174; https://doi.org/10.3390/rs16173174 - 28 Aug 2024
Cited by 1 | Viewed by 1523
Abstract
Agroecosystems are facing the adverse effects of climate change. This study explored how the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) can give new insight into irrigation allocation and plant health. Leveraging the global coverage and 70-m spatial resolution of the [...] Read more.
Agroecosystems are facing the adverse effects of climate change. This study explored how the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) can give new insight into irrigation allocation and plant health. Leveraging the global coverage and 70-m spatial resolution of the Evaporative Stress Index (ESI) from ECOSTRESS, we processed over 200 overpasses and examined patterns over 3 growing seasons across the Maipo River Basin of Central Chile, which faces exacerbated water stress. We found that ECOSTRESS ESI varies substantially based on the overpass time, with ESI values being systematically higher in the morning and lower in the afternoon. We also compared variations in ESI against spatial patterns in the environment. To that end, we analyzed the vegetation greenness sensed from Landsat 8 and compiled the referential irrigation allocation from Chilean water regulators. Consistently, we found stronger correlations between these variables and ESI in the morning time (than in the afternoon). Based on our findings, we discussed new insights and potential applications of ECOSTRESS ESI in support of improved agricultural monitoring and sustainable water management. Full article
Show Figures

Figure 1

25 pages, 5482 KiB  
Article
Enhancing Water Status and Nutrient Uptake in Drought-Stressed Lettuce Plants (Lactuca sativa L.) via Inoculation with Different Bacillus spp. Isolated from the Atacama Desert
by Christian Santander, Felipe González, Urley Pérez, Antonieta Ruiz, Ricardo Aroca, Cledir Santos, Pablo Cornejo and Gladys Vidal
Plants 2024, 13(2), 158; https://doi.org/10.3390/plants13020158 - 6 Jan 2024
Cited by 10 | Viewed by 3643
Abstract
Drought is a major challenge for agriculture worldwide, being one of the main causes of losses in plant production. Various studies reported that some soil’s bacteria can improve plant tolerance to environmental stresses by the enhancement of water and nutrient uptake by plants. [...] Read more.
Drought is a major challenge for agriculture worldwide, being one of the main causes of losses in plant production. Various studies reported that some soil’s bacteria can improve plant tolerance to environmental stresses by the enhancement of water and nutrient uptake by plants. The Atacama Desert in Chile, the driest place on earth, harbors a largely unexplored microbial richness. This study aimed to evaluate the ability of various Bacillus sp. from the hyper arid Atacama Desert in the improvement in tolerance to drought stress in lettuce (Lactuca sativa L. var. capitata, cv. “Super Milanesa”) plants. Seven strains of Bacillus spp. were isolated from the rhizosphere of the Chilean endemic plants Metharme lanata and Nolana jaffuelii, and then identified using the 16s rRNA gene. Indole acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were assessed. Lettuce plants were inoculated with Bacillus spp. strains and subjected to two different irrigation conditions (95% and 45% of field capacity) and their biomass, net photosynthesis, relative water content, photosynthetic pigments, nitrogen and phosphorus uptake, oxidative damage, proline production, and phenolic compounds were evaluated. The results indicated that plants inoculated with B. atrophaeus, B. ginsengihumi, and B. tequilensis demonstrated the highest growth under drought conditions compared to non-inoculated plants. Treatments increased biomass production and were strongly associated with enhanced N-uptake, water status, chlorophyll content, and photosynthetic activity. Our results show that specific Bacillus species from the Atacama Desert enhance drought stress tolerance in lettuce plants by promoting several beneficial plant traits that facilitate water absorption and nutrient uptake, which support the use of this unexplored and unexploited natural resource as potent bioinoculants to improve plant production under increasing drought conditions. Full article
(This article belongs to the Special Issue Mechanisms of Crop Growth and Development under Adverse Conditions)
Show Figures

Figure 1

31 pages, 3777 KiB  
Article
Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments
by Richard Snowball, Harmohinder S. Dhammu, Mario Francesco D’Antuono, David Troldahl, Ian Biggs, Callen Thompson, Mark Warmington, Amanda Pearce and Darshan L. Sharma
Agronomy 2022, 12(9), 2026; https://doi.org/10.3390/agronomy12092026 - 26 Aug 2022
Cited by 2 | Viewed by 2998
Abstract
Quinoa is being evaluated in cropping systems in many countries outside of its natural range of South America. Very few attempts have been made by farmers or researchers to grow or evaluate quinoa under Australian environments. Given the growing popularity of quinoa with [...] Read more.
Quinoa is being evaluated in cropping systems in many countries outside of its natural range of South America. Very few attempts have been made by farmers or researchers to grow or evaluate quinoa under Australian environments. Given the growing popularity of quinoa with consumers, new commercial opportunities for farmers and international interest in the crop, it was timely to undertake a comprehensive evaluation of the potential of quinoa in Australia. Two advanced selections and nine germplasm lines (six of Chilean and three of Bolivian origin) identified in an earlier project were tested in 23 field trials at 14 locations on mainland Australia. Targets included irrigated sites in tropical, Mediterranean, semi-arid and desert climates, and rain-fed sites of south-western Australia with a Mediterranean climate. The field experiments were either a randomised complete block design (RBCD) or a split plot/factorial design with 2–4 replicates, and a linear mixed model was used to compare the treatment lines. Seed yield of quinoa was highest when grown in winter and spring under rain-fed conditions in Geraldton, in spring and summer under irrigation at Bool Lagoon, and summer, autumn and winter under irrigation at Leeton. The highest seed yield achieved was 3 t/ha for a germplasm line from Chile, while the highest yield for a germplasm line from Bolivia was 2.6 t/ha. Advanced selections from Australia yielded well in comparison at most trial sites. Declining seed yield was associated with mean daily temperatures during seed development increasing above 17 °C, mean daily temperatures during flowering declining below 15 °C, and rainfall during seed development under rain-fed conditions falling below 50 mm. Seed produced at Bool Lagoon was the closest in colour to white quinoa imported from Peru; however, it was more than noticeably different. Seed produced at Geraldton and Leeton was significantly larger than from other field sites; however, none were larger than 2 mm in diameter as found in Royal white quinoa from Bolivia. Superior seed colour and seed size were associated with dry conditions at maturity and cool conditions during seed development, respectively. We conclude that quinoa can become a potential crop option for Australian agriculture by exploiting genetic diversity and supplementing with suitable management practices matched to agro-climatic environments. There are reasonable prospects to raise the seed yield potential in areas in all states, especially in the regions where quinoa grew well in our experiments. Full article
Show Figures

Figure 1

18 pages, 1339 KiB  
Article
A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile
by Aldo Barrueto Guzmán, Rodrigo Barraza Vicencio, Jorge Alfredo Ardila-Rey, Eduardo Núñez Ahumada, Arturo González Araya and Gerardo Arancibia Moreno
Energies 2018, 11(7), 1853; https://doi.org/10.3390/en11071853 - 16 Jul 2018
Cited by 25 | Viewed by 4876
Abstract
In the last five years, the Chilean Ministries of Agriculture and Energy developed a national strategy to incorporate renewable energies into various economic sectors. Since 2013, more than 1500 off-grid solar photovoltaic (PV) systems, with power ranging from 1 kW to 3 kW, [...] Read more.
In the last five years, the Chilean Ministries of Agriculture and Energy developed a national strategy to incorporate renewable energies into various economic sectors. Since 2013, more than 1500 off-grid solar photovoltaic (PV) systems, with power ranging from 1 kW to 3 kW, were installed to drive existing irrigation systems in small and medium-sized farms for the exportation of fresh fruit. A net billing regulation was also implemented in 2014. This study shows a cost-effective methodology for the sizing of solar PV systems for existing irrigation facilities in Chile, in an effort to improve the competitiveness of the fresh-fruit industry. The same methodology may also be implemented in other Latin American countries. The article presents the analysis of four projects (two in the Atacama Region, and two in the Maule Region). The baseline situation of the four units was studied, as well as the energy-efficient actions that may be applied, in addition to the recommended characteristics of the selected PV system to drive the irrigation systems of small fresh-fruit farms. Off-grid and on-grid solar PV systems were analyzed, including some particularities of the Chilean regulations. The required water demand of the irrigation systems and their corresponding pressure heads were also determined. The electricity demand of the system was calculated, and the PV system was designed for an optimal irrigation system. Additionally, an economical assessment was made for two years. In the first year, the cost effectiveness of energy-efficient actions was evaluated for the irrigation system, and it was found that they had paybacks of approximately two years. In the second year, the implementation of a PV system in each demonstrative unit was evaluated. The on-grid solar PV system performed better than the off-grid system, with evaluated paybacks of approximately 12 years. Finally, some recommendations for a well-designed on-grid solar PV system were made on the basis of it lasting over 25 years, with an adequate operation and maintenance plan. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

22 pages, 3782 KiB  
Review
Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment
by Cristina-Alejandra Villamar, Ismael Vera-Puerto, Diego Rivera and Felipe De la Hoz
Water 2018, 10(6), 817; https://doi.org/10.3390/w10060817 - 20 Jun 2018
Cited by 60 | Viewed by 11162
Abstract
Chile is an agricultural power, but also one of the most vulnerable countries to climate change and water shortage. About 50% of the irrigated agriculture land in Chile is in the central zone, thanks to its agricultural-climatic characteristics that provide an adequate water [...] Read more.
Chile is an agricultural power, but also one of the most vulnerable countries to climate change and water shortage. About 50% of the irrigated agriculture land in Chile is in the central zone, thanks to its agricultural-climatic characteristics that provide an adequate water supply (100–4000 m3/s). However, the vulnerability scenario in this zone is high due to the seasonal availability of water resources. Therefore, opportunities to use non-conventional alternative sources (e.g., wastewater) become an appealing and feasible option due to the high population and animal density (>76%) in this part of the country. Moreover, the physicochemical characteristics of the municipal and livestock wastewater suggest that there are potential opportunities to recycle nutrients for agricultural production. In Chile, wastewater reuse opportunities are noted by the wide coverage of wastewater treatment programs, with municipal and intensified livestock production taking up most of the percentage (>99%). Nevertheless, more than 70% of wastewater treatment systems reach biological secondary treatment, which suggests reuse possibilities only for non-food crops. Therefore, this paper is focused on a preliminary analysis of the potential of reusing and recycling municipal and livestock wastewater for Chilean agriculture. There is some reuse work occurring in Chile, specifically in the use of municipal and livestock wastewater for cereal crops (animal feed), forests, and grasslands. However, aspects related to the long-term effects of these practices have not yet been evaluated. Therefore, municipal and livestock wastewater in Chile could be re-valued in agriculture, but the current quality and condition of treated wastewater do not ensure its safe use in food crops. In addition, state policies are needed to provide sustainability (circular and ethic economy) to water reusing/recycling in agriculture. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop