Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Chibougamau pluton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 20569 KiB  
Article
An Archean Porphyry-Type Deposit: Cu-Au Mineralization Associated with the Chibougamau Tonalite–Diorite Pluton, Abitibi Greenstone Belt, Canada
by Alexandre Crépon, Lucie Mathieu, Daniel J. Kontak, Jeffrey Marsh and Michael A. Hamilton
Minerals 2024, 14(12), 1293; https://doi.org/10.3390/min14121293 - 20 Dec 2024
Cited by 1 | Viewed by 1787
Abstract
The Neoarchean diorite- and tonalite-dominated Chibougamau pluton (Canada) is ideal for case studies dedicated to the petrogenesis and timing of emplacement of fertile magmatic systems and associated Cu-Au porphyry systems. Using whole-rock analyses, geochronology, and zircon chemistry, it is determined that an early [...] Read more.
The Neoarchean diorite- and tonalite-dominated Chibougamau pluton (Canada) is ideal for case studies dedicated to the petrogenesis and timing of emplacement of fertile magmatic systems and associated Cu-Au porphyry systems. Using whole-rock analyses, geochronology, and zircon chemistry, it is determined that an early magmatic phase (pre-2714 Ma) is derived from a dioritic magma with a moderate ƒO2 (ΔFMQ 0 to +1), which is optimal for transporting Au and Cu, and that diorite is a potentially fertile magma. Field descriptions indicate that the main mineralizing style consists of sulfide-filled hairline fractures and quartz–carbonate veins. This is likely the consequence of fluid circulation facilitated by a well-developed diaclase network formed following the intrusion of magma at about 4–7 km depth in a competent hosting material. The petrographic features of fluid inclusions (FIs), considered with their microthermometric data and evaporate mound chemistry, suggest the exsolution of early CO2-rich fluids followed by the unmixing of later aqueous saline fluids characterized by a magmatic signature (i.e., Na-, Ca-, Fe-, Mn-, Ba-, and Cl-F). The type of magmatism and its oxidation state, age relationships, the nature of mineralization, and fluid chemistry together support a model whereby metalliferous fluids are derived from an intermediate hydrous magma. This therefore enforces a porphyry-type metallogenic model for this Archean setting. Full article
Show Figures

Figure 1

32 pages, 70698 KiB  
Article
Oxygen Fugacity and Volatile Content of Syntectonic Magmatism in the Neoarchean Abitibi Greenstone Belt, Superior Province, Canada
by Baptiste Madon, Lucie Mathieu and Jeffrey H. Marsh
Minerals 2020, 10(11), 966; https://doi.org/10.3390/min10110966 - 28 Oct 2020
Cited by 10 | Viewed by 6369
Abstract
Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with [...] Read more.
Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion. Full article
(This article belongs to the Special Issue Distribution of Major- and Trace-Elements in Igneous Minerals)
Show Figures

Figure 1

35 pages, 9767 KiB  
Article
Petrogenetic Study of the Multiphase Chibougamau Pluton: Archaean Magmas Associated with Cu–Au Magmato-Hydrothermal Systems
by Lucie Mathieu and Denis Racicot
Minerals 2019, 9(3), 174; https://doi.org/10.3390/min9030174 - 12 Mar 2019
Cited by 27 | Viewed by 8479
Abstract
The Chibougamau pluton is a Neoarchean multiphase intrusion that is related to Cu–Au porphyry-style deposits. In Archean greenstone belts, porphyries are marginal and poorly documented mineralizations. Such deposits are, however, important in the Chibougamau area, where the main historical mining camp (Central Camp) [...] Read more.
The Chibougamau pluton is a Neoarchean multiphase intrusion that is related to Cu–Au porphyry-style deposits. In Archean greenstone belts, porphyries are marginal and poorly documented mineralizations. Such deposits are, however, important in the Chibougamau area, where the main historical mining camp (Central Camp) is a magmato-hydrothermal system. Understanding such systems requires documenting the related magmatic rocks. This contribution focuses on the petrogenesis of the Chibougamau pluton to elucidate how the intrusion participated in Cu and Au mineralized systems. Using field descriptions, whole-rock analyses, and petrographic observations, we describe the source, emplacement mechanism, and chemical evolution of the Chibougamau pluton. The Chibougamau pluton is a TTD (tonalite-trondhjemite-diorite) suite that contains more K than most plutons of similar age. This suite was produced from a heterogeneous source; i.e., a hydrated basalt and possibly a metasomatized mantle. These are rare (and thus prospective) characteristics for an Archean intrusion. In addition, differentiation may have been sufficiently prolonged in the diorite phase to concentrate metals and fluids in the evolved magma. These magmatic constraints must now be tested against a renewed understanding of the Cu-dominated mineralized systems of the Chibougamau area. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop