Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Ceriantharia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 14715 KB  
Article
Cnida Morphology as Taxonomic Tools within Tube-Dwelling Anemones (Ceriantharia, Cnidaria)
by Anny C. Forero-Mejia, Laurent Duchatelet and Carina Östman
Oceans 2024, 5(3), 491-521; https://doi.org/10.3390/oceans5030029 - 5 Jul 2024
Viewed by 3452
Abstract
Cnidome morphology appears to be a valuable tool for anthozoan (Octocarallia, Ceriantharia, and Hexacorallia) taxonomy. Ceriantharian cnidomes consist of b-mastigophores, isorhizas, spirocysts, and ptychocysts, including different subtypes. The b-mastigophores are the most valuable ceriantharian cnidae for species identification. The Ceriantharian b-mastigophore terminology is [...] Read more.
Cnidome morphology appears to be a valuable tool for anthozoan (Octocarallia, Ceriantharia, and Hexacorallia) taxonomy. Ceriantharian cnidomes consist of b-mastigophores, isorhizas, spirocysts, and ptychocysts, including different subtypes. The b-mastigophores are the most valuable ceriantharian cnidae for species identification. The Ceriantharian b-mastigophore terminology is congruent to the b-mastigophores of Carlgren, b-rhabdoids, including the “faltstück” of Schmidt, spirulae, and also potentially the penicilli of den Hartog. The apical tightly folded, inverted b-mastigophore shafts, the “faltstück”, are important species-specific characteristics due to their various patterns. The mesenterial structures known as craspedonemes, cnidorages, and acontioids also have high taxonomic value. Drop-shaped b-mastigophores might be characteristic nematocysts for mesenteries. The occurrence of isorhizas and striations on the inner ptychocyst capsule walls are other species’ characteristics. The morphological similarities of spirulae and penicilli to b-mastigophores within Hexacorallia are highlighted by naming spirulae and penicilli as b-mastigophores/spirulae and b-mastigophores/penicilli subtypes, respectively. The slight morphological distinction between spirulae and penicilli will doubtfully justify the suborders Spirularia and Penicillaria. The spirocysts presence in Ceriantharia and Hexacorallia indicates a closer relationship between Ceriantharia and Hexacorallia than between Ceriantharia and Octocorallia. Octocorallia are the only anthozoans without spirocysts. This work underlines the importance of cnidome morphological analysis for taxonomic identification and classification. Full article
Show Figures

Figure 1

14 pages, 4634 KB  
Article
Cerianthus lloydii (Ceriantharia: Anthozoa: Cnidaria): New Status and New Perspectives
by Tina N. Molodtsova, Viktoria N. Moskalenko, Elizabeth V. Lipukhin, Tatiana I. Antokhina, Marina S. Ananeva and Ulyana V. Simakova
Biology 2023, 12(9), 1167; https://doi.org/10.3390/biology12091167 - 24 Aug 2023
Cited by 2 | Viewed by 2736
Abstract
Subclass Ceriantharia is a well-defined and probably ancient group of marine benthic organisms renowned for their bilateral symmetry, which is reflected in the arrangement of tentacles and mesenteries. Four species of Ceriantharia have been reported in the Arctic, including Cerianthus lloydii Gosse, 1859, [...] Read more.
Subclass Ceriantharia is a well-defined and probably ancient group of marine benthic organisms renowned for their bilateral symmetry, which is reflected in the arrangement of tentacles and mesenteries. Four species of Ceriantharia have been reported in the Arctic, including Cerianthus lloydii Gosse, 1859, also known from the Northern Atlantic and Northern Pacific. The integrity of this species was questioned in the literature, so we performed a molecular study of C. lloydii from several geographically distant locations using 18S and COI genes. The phylogenetic reconstructions show that specimens of C. lloydii form a single group with high support (>0.98), subdivided into distinctive clades: (1) specimens from Northern Europe, the Black and Barents seas, and (2) specimens from the White, Kara, Laptev, and Bering seas and also the Canadian Arctic and the Labrador Sea available via the BOLD database. There are several BOLD COI sequences of Pachycerianthus borealis (Verrill, 1873), which form a third clade of the C. lloydii group, sister to the European and Arctic clades. Based on low similarity (COI 86–87%) between C. lloydii and the type species of the genus Cerianthus Delle Chiaje, 1841—C. membranaceus (Gmelin, 1791), we propose a new status for the genus Synarachnactis Carlgren, 1924, and a new family Synarachnactidae to accommodate C. lloydii. Full article
(This article belongs to the Section Marine and Freshwater Biology)
Show Figures

Figure 1

9 pages, 602 KB  
Review
Diversity of Feeding in Anthozoa (Cnidaria): A Systematic Review
by Thaís Barbosa Santos, James D. Reimer, Fabián H. Acuña and Sérgio N. Stampar
Diversity 2020, 12(10), 405; https://doi.org/10.3390/d12100405 - 20 Oct 2020
Cited by 5 | Viewed by 6460
Abstract
In this study, we performed a bibliographical review examining the scientific literature on “feeding in Anthozoa” for the period from 1890 to 2019, using the scientific database Google Scholar, supplemented with additional literature. This study categorized published scientific papers on this topic by [...] Read more.
In this study, we performed a bibliographical review examining the scientific literature on “feeding in Anthozoa” for the period from 1890 to 2019, using the scientific database Google Scholar, supplemented with additional literature. This study categorized published scientific papers on this topic by decade of publication, target taxa, variability of species studied in each order and main themes studied. As a result, 153 studies were found, and based on their content, it was observed that within Anthozoa, there has been a concentration of feeding studies on species in the orders Actiniaria (Hexacorallia), Scleractinia (Hexacorallia), and Alcyonacea (Octocorallia). This indicates that the other remaining orders of the group have been comparatively neglected with regards to their feeding aspects. Therefore, as data on feeding in some groups of Anthozoa are scarce, studies need to be carried out to fill the gaps that permeate this important benthic group, in order to better understand their ecology. Full article
(This article belongs to the Special Issue Review Papers on Marine Diversity)
Show Figures

Graphical abstract

24 pages, 3877 KB  
Article
Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms
by Anna M. L. Klompen, Jason Macrander, Adam M. Reitzel and Sérgio N. Stampar
Mar. Drugs 2020, 18(8), 413; https://doi.org/10.3390/md18080413 - 5 Aug 2020
Cited by 31 | Viewed by 9048
Abstract
Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated [...] Read more.
Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins. Full article
Show Figures

Graphical abstract

Back to TopTop