Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Carreau–Yasuda nanofluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9090 KiB  
Article
Analysis of Motile Gyrotactic Micro-Organisms for the Bioconvection Peristaltic Flow of Carreau–Yasuda Bionanomaterials
by Zahid Nisar and Humaira Yasmin
Coatings 2023, 13(2), 314; https://doi.org/10.3390/coatings13020314 - 31 Jan 2023
Cited by 35 | Viewed by 2461
Abstract
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the [...] Read more.
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the examination of the thermodynamic and mass transfer of a Carreau–Yasuda magnetic bionanomaterial with gyrotactic micro-organisms, which is facilitated by radiative peristaltic transport. A compliant/elastic symmetric channel subject to partial slip constraints was chosen. The features of viscous dissipation and ohmic heating were incorporated into thermal transport. We use the Brownian and thermophoretic movement characteristics of the Buongiorno nanofluid model in this study. A set of nonlinear ordinary differential equations are created from the partial differential equations that control fluid flow. The governing system of differential equations is solved numerically via the shooting technique. The results of pertinent parameters are examined through velocity, temperature, motile micro-organisms, concentration, and heat transfer rate. Full article
Show Figures

Figure 1

29 pages, 13692 KiB  
Article
Peristalsis of Nanofluids via an Inclined Asymmetric Channel with Hall Effects and Entropy Generation Analysis
by Abdulwahed Muaybid A. Alrashdi
Mathematics 2023, 11(2), 458; https://doi.org/10.3390/math11020458 - 15 Jan 2023
Cited by 4 | Viewed by 1894
Abstract
This study deals with the entropy investigation of the peristalsis of a water–copper nanofluid through an asymmetric inclined channel. The asymmetric channel is anticipated to be filled with a uniform permeable medium, with a constant magnetic field impinging on the wall of the [...] Read more.
This study deals with the entropy investigation of the peristalsis of a water–copper nanofluid through an asymmetric inclined channel. The asymmetric channel is anticipated to be filled with a uniform permeable medium, with a constant magnetic field impinging on the wall of the channel. The physical effects, such as Hall current, mixed convection, Ohmic heating, and heat generation/annihilation, are also considered. Mathematical modeling from the given physical description is formulated while employing the “long wavelength, low Reynolds number” approximations. Analytical and numerical procedures allow for the determination of flow behavior in the resulting system, the results of which are presented in the form of tables and graphs, in order to facilitate the physical analysis. The results indicate that the growth of nanoparticle volume fraction corresponds to a reduction in temperature, entropy generation, velocity, and pressure gradient. The enhanced Hall and Brinkman parameters reduce the entropy generation and temperature for such flows, whereas the enhanced permeability parameter reduces the velocity and pressure gradient considerably. Furthermore, a comparison of the heat transfer rates for the two results, for different physical parameters, indicates that these results agree well. The significance of the underlying study lies in the fact that it analyzes the peristalsis of a non-Newtonian nanofluid, where the rheological characteristics of the fluid are predicted using the Carreau-Yasuda model and by considering the various physical effects. Full article
Show Figures

Figure 1

15 pages, 2503 KiB  
Article
Significance of the Coriolis Force on the Dynamics of Carreau–Yasuda Rotating Nanofluid Subject to Darcy–Forchheimer and Gyrotactic Microorganisms
by Bilal Ahmad, Muhammad Ozair Ahmad, Liaqat Ali, Bagh Ali, Ahmed Kadhim Hussein, Nehad Ali Shah and Jae Dong Chung
Mathematics 2022, 10(16), 2855; https://doi.org/10.3390/math10162855 - 10 Aug 2022
Cited by 14 | Viewed by 2447
Abstract
In this study, the significance of the Coriolis force on the dynamics of Carreau—Yasuda flow toward a continuously stretched surface subject to the Darcy–Forchheimer law is investigated. The nanoparticles are incorporated due to their unusual characteristics (e.g., extraordinary thermal conductivity), which are significant [...] Read more.
In this study, the significance of the Coriolis force on the dynamics of Carreau—Yasuda flow toward a continuously stretched surface subject to the Darcy–Forchheimer law is investigated. The nanoparticles are incorporated due to their unusual characteristics (e.g., extraordinary thermal conductivity), which are significant in heat exchangers and advanced nanotechnology. To avoid possible sedimentation of tiny particles, the gyrotactic microorganisms must be incorporated. The goal of this research was to find out the dynamics of three-dimensional rotational flow for nanofluids under the influence of Darcy–Forchheimer with the thermophoresis effect and motile microorganisms. The equations governing mass, momentum, and energy equations are formalized using partial derivatives, which may subsequently be transformed into dimensionless differential shapes using the personifications of apposite similarity transformations. The MATLAB application bvp4c was used in conjunction with a shooting technique to solve a nonlinear mathematical model based on ordinary differential equations. It was observed that the base fluid velocities decreased against higher input of rotation and porosity parameters; moreover, the Brownian motion and thermophoresis increased the temperature profile. Full article
(This article belongs to the Special Issue Numerical Methods for Computational Fluid Dynamics)
Show Figures

Figure 1

18 pages, 2126 KiB  
Article
Viscosity and Rheological Properties of Graphene Nanopowders Nanofluids
by Abderrahim Bakak, Mohamed Lotfi, Rodolphe Heyd, Amine Ammar and Abdelaziz Koumina
Entropy 2021, 23(8), 979; https://doi.org/10.3390/e23080979 - 29 Jul 2021
Cited by 29 | Viewed by 3372
Abstract
The dynamic viscosity and rheological properties of two different non-aqueous graphene nano-plates-based nanofluids are experimentally investigated in this paper, focusing on the effects of solid volume fraction and shear rate. For each nanofluid, four solid volume fractions have been considered ranging from 0.1% [...] Read more.
The dynamic viscosity and rheological properties of two different non-aqueous graphene nano-plates-based nanofluids are experimentally investigated in this paper, focusing on the effects of solid volume fraction and shear rate. For each nanofluid, four solid volume fractions have been considered ranging from 0.1% to 1%. The rheological characterization of the suspensions was performed at 20 C, with shear rates ranging from 101s1 to 103s1, using a cone-plate rheometer. The Carreau–Yasuda model has been successfully applied to fit most of the rheological measurements. Although it is very common to observe an increase of the viscosity with the solid volume fraction, we still found here that the addition of nanoparticles produces lubrication effects in some cases. Such a result could be very helpful in the domain of heat extraction applications. The dependence of dynamic viscosity with graphene volume fraction was analyzed using the model of Vallejo et al. Full article
(This article belongs to the Special Issue Statistical Fluid Dynamics)
Show Figures

Figure 1

24 pages, 514 KiB  
Article
On Numerical Analysis of Carreau–Yasuda Nanofluid Flow over a Non-Linearly Stretching Sheet under Viscous Dissipation and Chemical Reaction Effects
by Stanford Shateyi and Hillary Muzara
Mathematics 2020, 8(7), 1148; https://doi.org/10.3390/math8071148 - 14 Jul 2020
Cited by 8 | Viewed by 3199
Abstract
This work reports the Carreau–Yasuda nanofluid flow over a non-linearly stretching sheet viscous dissipation and chemical reaction effects. The coupled system of non-linear partial differential equations are changed into a system of linear differential equations employing similarity equations. The spectral quasi-linearization method was [...] Read more.
This work reports the Carreau–Yasuda nanofluid flow over a non-linearly stretching sheet viscous dissipation and chemical reaction effects. The coupled system of non-linear partial differential equations are changed into a system of linear differential equations employing similarity equations. The spectral quasi-linearization method was used to solve the linear differential equations numerically. Error norms were used to authenticate the accuracy and convergence of the numerical method. The effects of some thermophysical parameters of interest in this current study on the non-dimensional fluid velocity, concentration and temperature, the skin friction, local Nusselt and Sherwood numbers are presented graphically. Tables were used to depict the effects of selected parameters on the skin friction and the Nusselt number. Full article
Show Figures

Figure 1

Back to TopTop