Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Carlin-Type gold deposit arsenopyrite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8308 KiB  
Article
Metallogenic Mechanism of Carlin-Type Gold Deposit in Zhen’an-Xunyang Basin, in the South Qinling of China: Constraints of In Situ Trace Elements and S Isotopes from Newly Discovered Wangzhuang Gold Deposit
by Wuyi Meng, Jiajun Liu, Huanhuan Wu, Zhen Zhang, Weidong Tang, Yongbao Gao, Liyong Wei, Bin Jia, Xin Zheng and Ningbo Liu
Minerals 2023, 13(11), 1459; https://doi.org/10.3390/min13111459 - 20 Nov 2023
Cited by 2 | Viewed by 1995
Abstract
The Zhen’an-Xunyang Basin is a late Paleozoic rifted basin with a series of Au-Hg-Sb deposits that have been found, mostly along the Nanyangshan fault. Recently discovered large- and medium-sized gold deposits such as the Xiaohe and Wangzhuang deposits exhibit typical characteristics of Carlin-type [...] Read more.
The Zhen’an-Xunyang Basin is a late Paleozoic rifted basin with a series of Au-Hg-Sb deposits that have been found, mostly along the Nanyangshan fault. Recently discovered large- and medium-sized gold deposits such as the Xiaohe and Wangzhuang deposits exhibit typical characteristics of Carlin-type gold deposits. Therefore, it is imperative to select a typical deposit for an in-depth study of its metallogenic mechanism to support future prospecting efforts targeting the Carlin-type gold deposits within the area. Based on detailed field investigation and microphotographic observation, four ore-forming stages are identified: I, low-sulfide quartz stage, characterized by euhedral, subhedral pyrite, and fine veins of quartz injected parallel to the strata; II, arsenopyrite–arsenian pyrite–quartz stage, the main mineralization stage characterized by strongly silicified zones of reticulated quartz, disseminated arsenopyrite, fine-grained pyrite; III, low-sulfide quartz stage, characterized by large quartz veins cutting through the ore body or fine veins of quartz; Ⅳ, carbonate–quartz stage, characterized by the appearance of a large number of calcite veins. In situ analysis of trace elements and S isotopes of typical metal sulfides was carried out. The results show significant variations in the trace element compositions of metal sulfides in different stages, among which the main mineralization stage differs notably from those of the Au- and As-low surrounding strata. In situ S isotope analysis reveals δ34S values ranging from 15.78‰ to 28.71‰ for stage I metal sulfides, 5.52‰ to 11.22‰ for stage II, and 0.3‰ to 5.25‰ for stage III, respectively, revealing a gradual decrease in S isotopic values from the pre-mineralization stage to post-mineralization stage, similar to those observed in the Xiaohe gold deposit. These features indicate a distinct injection of relatively low 34S hydrothermal fluids during the mineralization process. The element anomalies of the 1:50,000 stream sediment in the region revealed ore-forming element zonation changing in W→Au (W)→Hg, Sb (Au) anomalies from west to east, manifested by the discovery of tungsten, gold, and mercury–antimony deposits in the area. Moreover, conspicuous Cr-Ni-Ti-Co-Mo anomalies were observed on the western side of the Wangzhuang and Xiaohe gold deposits, indicating a potential concealed pluton related to these deposits. These lines of evidence point to a magmatic–hydrothermal origin for the Carlin-type gold deposits in this area. Furthermore, hydrothermal tungsten deposits, Carlin-type gold deposits, and low-temperature hydrothermal mercury–antimony deposits in this region are probably controlled by the same magma–hydrothermal system. Full article
Show Figures

Figure 1

10 pages, 6379 KiB  
Article
Mineral Phase Evolution during Oxidation Roasting Pretreatment of Typical Carlin Gold Ore and Effects on Gold Leaching Efficiency
by Licheng Ma, Xiang Liu, Lei Wang and Jungang Qi
Minerals 2023, 13(4), 558; https://doi.org/10.3390/min13040558 - 16 Apr 2023
Cited by 3 | Viewed by 2770
Abstract
Arsenious and sulphur-bearing micro-disseminated gold ore is a kind of typical refractory Carlin-Type. The gold in Carlin-Type gold ore grains is distributed finely, existing as invisible or submicroscopic gold, encapsulated in arsenopyrite and pyrite. The technical difficulty of treatment Carlin-Type gold ore lies [...] Read more.
Arsenious and sulphur-bearing micro-disseminated gold ore is a kind of typical refractory Carlin-Type. The gold in Carlin-Type gold ore grains is distributed finely, existing as invisible or submicroscopic gold, encapsulated in arsenopyrite and pyrite. The technical difficulty of treatment Carlin-Type gold ore lies in how to release the fine gold wrapped in pyrite and arsenopyrite. In this study, the oxidation roasting pre-treatment technique was used to treat the Carlin-Type gold ore. This included a two-stage roasting process: the arsenic was removed in the first roasting process, and the sulphur was removed in the second roasting process. The thermodynamic of the roasting process was analyzed, and the mineral phase evolution of the roasting process was investigated by using XRD, SEM and EDS. Finally, the influence of sodium cyanide dosage and leaching time on leaching efficiency was investigated. The results suggest that for the first roasting temperature at 550 °C, and the second roasting at temperature 700 °C with air flow 2.5 L/min, the sodium cyanide dosage is 1.75 kg/t and leaching time is 27 h; a good leaching efficiency is obtained with 83.85%. Full article
(This article belongs to the Special Issue Valuable Metals Recovery by Mineral Processing and Hydrometallurgy)
Show Figures

Figure 1

24 pages, 7312 KiB  
Article
Genesis of the Tangshang Au Deposit in Southeast Yunnan Province, China: Constraints from In Situ Chemical and S-Sr Isotope Analyses
by Weifang Song, Pan Wu, Jianzhong Liu, Junhai Li, Zepeng Wang, Qinping Tan, Zhuojun Xie and Lulin Zheng
Minerals 2022, 12(7), 806; https://doi.org/10.3390/min12070806 - 24 Jun 2022
Viewed by 2389
Abstract
The Yunnan–Guizhou–Guangxi district (also known as the Dian–Qian–Gui “Golden Triangle”) in southwestern China contains numerous Carlin-type Au deposits (CTGDs). However, the sources of Au and Au-bearing fluids in these deposits remain controversial. The Tangshang Au deposit is a middle-sized CTGD in southeastern Yunnan [...] Read more.
The Yunnan–Guizhou–Guangxi district (also known as the Dian–Qian–Gui “Golden Triangle”) in southwestern China contains numerous Carlin-type Au deposits (CTGDs). However, the sources of Au and Au-bearing fluids in these deposits remain controversial. The Tangshang Au deposit is a middle-sized CTGD in southeastern Yunnan Province. This study involved in situ chemical and S isotope analyses of sulfides and in situ trace elemental and Sr isotope analyses of ore-related calcite; these data were used to trace the sources of fluids and Au, as well as the genesis of this deposit. Four pyrite types (Py1, Py2, Py3, and Py4) and two arsenopyrite types (Apy1 and Apy2) were identified based on their textural characteristics. It was found that Py1 contains relatively lower Au, Sb, Cu, and Tl contents than those of Py2, Py3, and Py4. Py1 is wrapped by rim-Py2 and Py3, which indicates an early-ore-stage genesis. The Carlin-type mineralization elements are elevated in the pyrites (Au = 3.04–38.1 ppm; As = 40,932–65,833 ppm; Tl = 0 to 3.3 ppm; Sb = 1.2 to 343 ppm; and Cu = 10 to 102 ppm), and the average Co/Ni ratio is 0.54. Additionally, Au has a positive correlation with Tl and Cu. The high concentrations of As and Au in all types of pyrite indicate that the ore-forming fluids are rich in both elements. The sulfides in the ores were shown to produce similar S isotope ratios, which are obviously higher than the S isotope value of sulfide (~0‰) in Emeishan basalt; therefore, the integration of these and elemental composition data indicated that all pyrites (Py1, Py2, Py3, and Py4) form during the ore stage. These results also demonstrate that the δ34S values of the Au-bearing fluids are higher than those of basalt wall rocks. The flat chondrite-normalized REEs pattern and positive Eu anomaly of the calcite were similar to those obtained from Emeishan basalt, which suggests a reducing characteristic of hydrothermal fluids. The 87Sr/86Sr ratios (0.70557–0.70622) of calcite were also comparable to the range obtained from Emeishan basalt. Some slightly higher 87Sr/86Sr ratios, which ranged between those obtained from Emeishan basalt and limestone from the Maokou Formation, indicated that the Sr isotope ratios of the Au-bearing fluids are higher than those of Emeishan basalt. Based on data generated in the present study and the regional geology of this area, a genetic model involving a metamorphic fluid system was proposed for the Tangshang gold deposit, and a gold mineralization event related to metamorphic fluid in the south of the Dian–Qian–Gui “Golden Triangle” was indicated. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

12 pages, 3680 KiB  
Article
Two Hydrothermal Events at the Shuiyindong Carlin-Type Gold Deposit in Southwestern China: Insight from Sm–Nd Dating of Fluorite and Calcite
by Qinping Tan, Yong Xia, Zhuojun Xie, Zepeng Wang, Dongtian Wei, Yimeng Zhao, Jun Yan and Songtao Li
Minerals 2019, 9(4), 230; https://doi.org/10.3390/min9040230 - 12 Apr 2019
Cited by 29 | Viewed by 5000
Abstract
The Shuiyindong Gold Mine hosts one of the largest and highest-grade, strata-bound Carlin-type gold deposits discovered to date in Southwestern China. The outcrop stratigraphy and drill core data of the deposit reveal Middle–Upper Permian and Lower Triassic formations. The ore is mainly hosted [...] Read more.
The Shuiyindong Gold Mine hosts one of the largest and highest-grade, strata-bound Carlin-type gold deposits discovered to date in Southwestern China. The outcrop stratigraphy and drill core data of the deposit reveal Middle–Upper Permian and Lower Triassic formations. The ore is mainly hosted in Upper Permian bioclastic limestone near the axis of an anticline. The gold is mainly hosted in arsenian pyrite and arsenopyrite, mainly existing in the form of crystal lattice gold, submicroscopic particles and nanoparticles. Fluorite commonly occurs at the vicinity of an unconformity between the Middle–Upper Permian formations, which is proposed to be the structural conduit that fed the ore fluids. Calcite commonly fills fractures at the periphery of decarbonated rocks, which contain high grade orebodies. This study aimed to verify the occurrence of two distinct hydrothermal events at the Shuiyindong, based on Sm–Nd isotope dating of the fluorite and calcite. For this purpose, rare-earth element (REE) concentrations, Sm/Nd isotope ratios, and Sm–Nd isochron ages of the fluorite and calcite were determined. The fluorite and calcite contain relatively high total concentrations of REE (12.3–25.6 μg/g and 5.71–31.7 μg/g, respectively), exhibit variable Sm/Nd ratios (0.52–1.03 and 0.57–1.71, respectively), and yield Sm–Nd isochron ages of 200.1 ± 8.6 Ma and 150.2 ± 2.2 Ma, with slightly different initial ε Nd ( t ) values of −4.4 and −1.1, respectively. These two groups of Sm–Nd isochron ages suggest two episodes of hydrothermal events at the Shuiyindong gold deposit. The age of the calcite probably represents the late stage of the gold mineralization period. The initial ε Nd ( t ) values of the fluorite and calcite indicate that the Nd was probably derived from mixtures of basaltic volcanic tuff and bioclastic limestone from the Permian formations. Full article
(This article belongs to the Special Issue Nanomineralogy)
Show Figures

Figure 1

Back to TopTop