Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Candidatus Anaplasma camelii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6183 KB  
Article
Molecular Detection of Candidatus Anaplasma camelii in Naturally Infected Dromedary Camels (Camelus dromedarius) in Abu Dhabi Emirate, United Arab Emirates, 2019–2023
by Hassan Zackaria Ali Ishag, Shameem Habeeba, El Tigani Ahmed El Tigani-Asil, Mohd Farouk Yuosf, Zulaikha Mohamed Abdel Hameed Al Hammadi, Abraham Nii Okai Commey, Hashel Talal Aboud Amer Bin Hraiz, Asma Abdi Mohamed Shah and Abdelmalik Ibrahim Khalafalla
Vet. Sci. 2024, 11(3), 123; https://doi.org/10.3390/vetsci11030123 - 7 Mar 2024
Viewed by 4258
Abstract
The recent emergence of anaplasmosis in camels has raised global interest in the pathogenicity and zoonotic potential of the pathogen causing it and the role of camels as reservoir hosts. In the United Arab Emirates (UAE), molecular studies and genetic characterization of camel-associated [...] Read more.
The recent emergence of anaplasmosis in camels has raised global interest in the pathogenicity and zoonotic potential of the pathogen causing it and the role of camels as reservoir hosts. In the United Arab Emirates (UAE), molecular studies and genetic characterization of camel-associated Anaplasma species are limited. This study aimed to characterize molecularly Anaplasmataceae strains circulating in dromedary camels in the UAE. Two hundred eighty-seven whole-blood samples collected from dromedary camels across regions of the Abu Dhabi Emirate were received between 2019 and 2023 at the Abu Dhabi Agriculture and Food Safety Authority (ADAFSA) veterinary laboratories for routine diagnosis of anaplasmosis. The animals were sampled based on field clinical observation by veterinarians and their tentative suspicion of blood parasite infection on the basis of similar clinical symptoms as those caused by blood parasites in ruminants. The samples were screened for Anaplasmataceae by PCR assay targeting the groEL gene. Anaplasmataceae strains were further characterized by sequencing and phylogenetic analysis of the groEL gene. Thirty-five samples (35/287 = 12.2%) tested positive for Anaplasmataceae spp. by PCR assay. Nine positive samples (9/35 = 25.7%) were sequenced using groEL gene primers. GenBank BLAST analysis revealed that all strains were 100% identical to the Candidatus A. camelii reference sequence available in the GenBank nucleotide database. Phylogenetic analysis further indicated that the sequences were close to each other and were located in one cluster with Candidatus A. camelii sequences detected in Saudi Arabia, Morocco, and the UAE. Pairwise alignment showed that the UAE sequences detected in this study were completely identical and shared 100% identity with Candidatus A. camelii from Morocco and Saudi Arabia and 99.5% identity with Candidatus A. camelii from the UAE. This study demonstrates the presence of Candidatus A. camelii in UAE dromedary camels. Further critical investigation of the clinical and economical significance of this pathogen in camels needs to be carried out. Full article
(This article belongs to the Special Issue Parasitology Diseases in Large Animals)
Show Figures

Figure 1

20 pages, 12211 KB  
Article
Ticks and Tick-Borne Pathogens Associated with Dromedary Camels (Camelus dromedarius) in Northern Kenya
by Dennis Getange, Joel L. Bargul, Esther Kanduma, Marisol Collins, Boku Bodha, Diba Denge, Tatenda Chiuya, Naftaly Githaka, Mario Younan, Eric M. Fèvre, Lesley Bell-Sakyi and Jandouwe Villinger
Microorganisms 2021, 9(7), 1414; https://doi.org/10.3390/microorganisms9071414 - 30 Jun 2021
Cited by 36 | Viewed by 8012
Abstract
Ticks and tick-borne pathogens (TBPs) are major constraints to camel health and production, yet epidemiological data on their diversity and impact on dromedary camels remain limited. We surveyed the diversity of ticks and TBPs associated with camels and co-grazing sheep at 12 sites [...] Read more.
Ticks and tick-borne pathogens (TBPs) are major constraints to camel health and production, yet epidemiological data on their diversity and impact on dromedary camels remain limited. We surveyed the diversity of ticks and TBPs associated with camels and co-grazing sheep at 12 sites in Marsabit County, northern Kenya. We screened blood and ticks (858 pools) from 296 camels and 77 sheep for bacterial and protozoan TBPs by high-resolution melting analysis and sequencing of PCR products. Hyalomma (75.7%), Amblyomma (17.6%) and Rhipicephalus (6.7%) spp. ticks were morphologically identified and confirmed by molecular analyses. We detected TBP DNA in 80.1% of blood samples from 296 healthy camels. “Candidatus Anaplasma camelii”, “Candidatus Ehrlichia regneryi” and Coxiella burnetii were detected in both camels and associated ticks, and Ehrlichia chaffeensis, Rickettsia africae, Rickettsia aeschlimannii and Coxiella endosymbionts were detected in camel ticks. We also detected Ehrlichia ruminantium, which is responsible for heartwater disease in ruminants, in Amblyomma ticks infesting camels and sheep and in sheep blood, indicating its endemicity in Marsabit. Our findings also suggest that camels and/or the ticks infesting them are disease reservoirs of zoonotic Q fever (C. burnetii), ehrlichiosis (E. chaffeensis) and rickettsiosis (R. africae), which pose public health threats to pastoralist communities. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

16 pages, 5126 KB  
Article
Exploring Prokaryotic and Eukaryotic Microbiomes Helps in Detecting Tick-Borne Infectious Agents in the Blood of Camels
by Wessam Mohamed Ahmed Mohamed, Alsagher O. Ali, Hassan Y. A. H. Mahmoud, Mosaab A. Omar, Elisha Chatanga, Bashir Salim, Doaa Naguib, Jason L. Anders, Nariaki Nonaka, Mohamed Abdallah Mohamed Moustafa and Ryo Nakao
Pathogens 2021, 10(3), 351; https://doi.org/10.3390/pathogens10030351 - 16 Mar 2021
Cited by 27 | Viewed by 5261
Abstract
Dromedary camels (Camelus dromedarius) are widely distributed in Africa, the Middle East and northern India. In this study, we aimed to detect tick-borne pathogens through investigating prokaryotic and eukaryotic microorganisms in camel blood based on a metagenomic approach and then to [...] Read more.
Dromedary camels (Camelus dromedarius) are widely distributed in Africa, the Middle East and northern India. In this study, we aimed to detect tick-borne pathogens through investigating prokaryotic and eukaryotic microorganisms in camel blood based on a metagenomic approach and then to characterize potentially pathogenic organisms using traditional molecular techniques. We showed that the bacteria circulating in the blood of camels is dominated by Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. At the genus level, Sediminibacterium, Hydrotalea, Bradyrhizobium and Anaplasma were the most abundant taxa. Eukaryotic profile was dominated by Fungi, Charophyta and Apicomplexa. At the genus level, Theileria was detected in 10 out of 18 samples, while Sarcocystis, Hoplorhynchus and Stylocephalus were detected in one sample each. Our metagenomic approach was successful in the detection of several pathogens or potential pathogens including Anaplasma sp., Theileria ovis, Th. separata, Th. annulate, Th. mutans-like and uncharacterized Theileria sp. For further characterization, we provided the partial sequences of citrate synthase (gltA) and heat-shock protein (groEL) genes of Candidatus Anaplasma camelii. We also detected Trypanosoma evansi type A using polymerase chain reaction (PCR) targeting the internal transcribed spacer 1 (ITS1) region. This combined metagenomic and traditional approach will contribute to a better understanding of the epidemiology of pathogens including tick-borne bacteria and protozoa in animals. Full article
(This article belongs to the Collection Regional Impact of Ticks and Tick-Borne Diseases)
Show Figures

Figure 1

Back to TopTop