Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = CT derived fractional flow reserve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1969 KiB  
Review
Computed Tomography and Coronary Plaque Analysis
by Hashim Alhammouri, Ramzi Ibrahim, Rahmeh Alasmar, Mahmoud Abdelnabi, Eiad Habib, Mohamed Allam, Hoang Nhat Pham, Hossam Elbenawi, Juan Farina, Balaji Tamarappoo, Clinton Jokerst, Kwan Lee, Chadi Ayoub and Reza Arsanjani
Tomography 2025, 11(8), 85; https://doi.org/10.3390/tomography11080085 - 30 Jul 2025
Viewed by 327
Abstract
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies [...] Read more.
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies offer improved spatial resolution, tissue differentiation, and functional assessment of coronary lesions. Additionally, artificial intelligence has emerged as a powerful tool to automate plaque detection, quantify burden, and refine risk prediction. Collectively, these innovations provide a more comprehensive approach to coronary artery disease evaluation and support personalized management strategies. Full article
(This article belongs to the Special Issue New Trends in Diagnostic and Interventional Radiology)
Show Figures

Figure 1

20 pages, 1630 KiB  
Review
Fractional Flow Reserve from Coronary CT: Evidence, Applications, and Future Directions
by Arta Kasaeian, Mohadese Ahmadzade, Taylor Hoffman, Mohammad Ghasemi-Rad and Anoop Padoor Ayyappan
J. Cardiovasc. Dev. Dis. 2025, 12(8), 279; https://doi.org/10.3390/jcdd12080279 - 22 Jul 2025
Viewed by 386
Abstract
Coronary computed tomography angiography (CCTA) has emerged as the leading noninvasive imaging modality for the assessment of coronary artery disease (CAD), offering high-resolution visualization of the coronary anatomy and plaque characterization. The development of fractional flow reserve derived from CCTA (FFR-CT) has further [...] Read more.
Coronary computed tomography angiography (CCTA) has emerged as the leading noninvasive imaging modality for the assessment of coronary artery disease (CAD), offering high-resolution visualization of the coronary anatomy and plaque characterization. The development of fractional flow reserve derived from CCTA (FFR-CT) has further transformed the diagnostic landscape by enabling the simultaneous evaluation of both anatomical stenosis and lesion-specific ischemia. FFR-CT has demonstrated diagnostic accuracy comparable to invasive FFR. The combined use of CCTA and FFR-CT is now pivotal in a broad range of clinical scenarios, including the evaluation of stable and acute chest pain, assessment of high-risk and complex plaque features, and preoperative planning. As evidence continues to mount, CCTA and FFR-CT are positioned to become the primary gatekeepers to the cardiac catheterization laboratory, potentially reducing the number of unnecessary invasive procedures. This review highlights the growing clinical utility of FFR-CT, its integration with advanced plaque imaging, and the future potential of these technologies in redefining the management of CAD, while also acknowledging current limitations, including image quality requirements, cost, and access. Full article
Show Figures

Figure 1

13 pages, 898 KiB  
Article
Interrater Variability of ML-Based CT-FFR in Patients without Obstructive CAD before TAVR: Influence of Image Quality, Coronary Artery Calcifications, and Location of Measurement
by Robin F. Gohmann, Adrian Schug, Christian Krieghoff, Patrick Seitz, Nicolas Majunke, Maria Buske, Fyn Kaiser, Sebastian Schaudt, Katharina Renatus, Steffen Desch, Sergey Leontyev, Thilo Noack, Philipp Kiefer, Konrad Pawelka, Christian Lücke, Ahmed Abdelhafez, Sebastian Ebel, Michael A. Borger, Holger Thiele, Christoph Panknin, Mohamed Abdel-Wahab, Matthias Horn and Matthias Gutberletadd Show full author list remove Hide full author list
J. Clin. Med. 2024, 13(17), 5247; https://doi.org/10.3390/jcm13175247 - 4 Sep 2024
Cited by 1 | Viewed by 1731
Abstract
Objectives: CT-derived fractional flow reserve (CT-FFR) can improve the specificity of coronary CT-angiography (cCTA) for ruling out relevant coronary artery disease (CAD) prior to transcatheter aortic valve replacement (TAVR). However, little is known about the reproducibility of CT-FFR and the influence of [...] Read more.
Objectives: CT-derived fractional flow reserve (CT-FFR) can improve the specificity of coronary CT-angiography (cCTA) for ruling out relevant coronary artery disease (CAD) prior to transcatheter aortic valve replacement (TAVR). However, little is known about the reproducibility of CT-FFR and the influence of diffuse coronary artery calcifications or segment location. The objective was to assess the reliability of machine-learning (ML)-based CT-FFR prior to TAVR in patients without obstructive CAD and to assess the influence of image quality, coronary artery calcium score (CAC), and the location of measurement within the coronary tree. Methods: Patients assessed for TAVR, without obstructive CAD on cCTA were evaluated with ML-based CT-FFR by two observers with differing experience. Differences in absolute values and categorization into hemodynamically relevant CAD (CT-FFR ≤ 0.80) were compared. Results in regard to CAD were also compared against invasive coronary angiography. The influence of segment location, image quality, and CAC was evaluated. Results: Of the screened patients, 109/388 patients did not have obstructive CAD on cCTA and were included. The median (interquartile range) difference of CT-FFR values was −0.005 (−0.09 to 0.04) (p = 0.47). Differences were smaller with high values. Recategorizations were more frequent in distal segments. Diagnostic accuracy of CT-FFR between both observers was comparable (proximal: Δ0.2%; distal: Δ0.5%) but was lower in distal segments (proximal: 98.9%/99.1%; distal: 81.1%/81.6%). Image quality and CAC had no clinically relevant influence on CT-FFR. Conclusions: ML-based CT-FFR evaluation of proximal segments was more reliable. Distal segments with CT-FFR values close to the given threshold were prone to recategorization, even if absolute differences between observers were minimal and independent of image quality or CAC. Full article
(This article belongs to the Topic AI in Medical Imaging and Image Processing)
Show Figures

Figure 1

12 pages, 940 KiB  
Article
Combined Computed Coronary Tomography Angiography and Transcatheter Aortic Valve Implantation (TAVI) Planning Computed Tomography Reliably Detects Relevant Coronary Artery Disease Pre-TAVI
by Dominik Felbel, Christoph Buck, Natalie Riedel, Michael Paukovitsch, Tilman Stephan, Marvin Krohn-Grimberghe, Johannes Mörike, Birgid Gonska, Christoph Panknin, Christopher Kloth, Meinrad Beer, Wolfgang Rottbauer and Dominik Buckert
J. Clin. Med. 2024, 13(16), 4885; https://doi.org/10.3390/jcm13164885 - 19 Aug 2024
Viewed by 1360
Abstract
Background: Before surgical or transcatheter aortic valve implantation (TAVI), coronary status evaluation is required. The role of combined computed coronary tomography angiography (cCTA) and TAVI planning CT in this context is not yet well elucidated. This study assessed whether relevant proximal coronary disease [...] Read more.
Background: Before surgical or transcatheter aortic valve implantation (TAVI), coronary status evaluation is required. The role of combined computed coronary tomography angiography (cCTA) and TAVI planning CT in this context is not yet well elucidated. This study assessed whether relevant proximal coronary disease requiring coronary revascularization can be safely detected by combined cCTA and TAVI planning CT, including CT-derived fractional flow reserve (FFR) calculation in patients with severe aortic stenosis. Methods: This study analyzed patients with successful cCTA combined with TAVI planning CT using a 128-slice dual-source scanner. The detection via cCTA of relevant left main stem stenosis (>50%) or proximal coronary artery stenosis (>70%) was compared to invasive coronary angiography (ICA). Results: This study comprised 101 consecutive TAVI patients with a median age of 83 [77–86] years, a median STS score of 3.7 [2.4–6.1] and 54% of whom had known coronary artery disease. Of 15 patients with relevant coronary stenoses, 14 (93.3%) were detected with cCTA, while false positive results were found in 25 patients. Only in patients with previous percutaneous coronary stent implantation (PCI) were false positive rates (11/29) increased. In the subgroup without previous PCI, an improved classification performance of 87.5%, being mainly due to 11.1% false positive classifications, led to a negative predictive value of 98.5%. Conclusions: Combined cCTA and CT-FFR with TAVI planning CT via state-of-the-art scanners and protocols as a one-stop shop can replace routine ICA in patients prior to TAVI due to its safe detection of relevant coronary artery stenosis, although diagnostic performance of cCTA is only reduced in patients with coronary stents. Full article
(This article belongs to the Special Issue Recent Advances in Transcatheter Aortic Valve Replacement)
Show Figures

Figure 1

23 pages, 2594 KiB  
Review
The Role of Multimodality Imaging (CT & MR) as a Guide to the Management of Chronic Coronary Syndromes
by Luigi Tassetti, Enrico Sfriso, Francesco Torlone, Andrea Baggiano, Saima Mushtaq, Francesco Cannata, Alberico Del Torto, Fabio Fazzari, Laura Fusini, Daniele Junod, Riccardo Maragna, Alessandra Volpe, Nazario Carrabba, Edoardo Conte, Marco Guglielmo, Lucia La Mura, Valeria Pergola, Roberto Pedrinelli, Ciro Indolfi, Gianfranco Sinagra, Pasquale Perrone Filardi, Andrea Igoren Guaricci and Gianluca Pontoneadd Show full author list remove Hide full author list
J. Clin. Med. 2024, 13(12), 3450; https://doi.org/10.3390/jcm13123450 - 13 Jun 2024
Cited by 3 | Viewed by 2061
Abstract
Chronic coronary syndrome (CCS) is one of the leading cardiovascular causes of morbidity, mortality, and use of medical resources. After the introduction by international guidelines of the same level of recommendation to non-invasive imaging techniques in CCS evaluation, a large debate arose about [...] Read more.
Chronic coronary syndrome (CCS) is one of the leading cardiovascular causes of morbidity, mortality, and use of medical resources. After the introduction by international guidelines of the same level of recommendation to non-invasive imaging techniques in CCS evaluation, a large debate arose about the dilemma of choosing anatomical (with coronary computed tomography angiography (CCTA)) or functional imaging (with stress echocardiography (SE), cardiovascular magnetic resonance (CMR), or nuclear imaging techniques) as a first diagnostic evaluation. The determinant role of the atherosclerotic burden in defining cardiovascular risk and prognosis more than myocardial inducible ischemia has progressively increased the use of a first anatomical evaluation with CCTA in a wide range of pre-test probability in CCS patients. Functional testing holds importance, both because the role of revascularization in symptomatic patients with proven ischemia is well defined and because functional imaging, particularly with stress cardiac magnetic resonance (s-CMR), gives further prognostic information regarding LV function, detection of myocardial viability, and tissue characterization. Emerging techniques such as stress computed tomography perfusion (s-CTP) and fractional flow reserve derived from CT (FFRCT), combining anatomical and functional evaluation, appear capable of addressing the need for a single non-invasive examination, especially in patients with high risk or previous revascularization. Furthermore, CCTA in peri-procedural planning is promising to acquire greater importance in the non-invasive planning and guiding of complex coronary revascularization procedures, both by defining the correct strategy of interventional procedure and by improving patient selection. This review explores the different roles of non-invasive imaging techniques in managing CCS patients, also providing insights into preoperative planning for percutaneous or surgical myocardial revascularization. Full article
(This article belongs to the Special Issue Trends and Prospects in Cardiac MRI)
Show Figures

Figure 1

49 pages, 32709 KiB  
Review
Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment
by Zhonghua Sun, Jenna Silberstein and Mauro Vaccarezza
J. Cardiovasc. Dev. Dis. 2024, 11(1), 22; https://doi.org/10.3390/jcdd11010022 - 12 Jan 2024
Cited by 4 | Viewed by 3914
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring [...] Read more.
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor–patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed. Full article
(This article belongs to the Special Issue Feature Papers in Imaging)
Show Figures

Figure 1

13 pages, 5639 KiB  
Review
Cardiac Computed Tomography in Monitoring Revascularization
by Elisabetta Tonet, Veronica Amantea, Davide Lapolla, Paolo Assabbi, Alberto Boccadoro, Maria Letizia Berloni, Marco Micillo, Federico Marchini, Serena Chiarello, Alberto Cossu and Gianluca Campo
J. Clin. Med. 2023, 12(22), 7104; https://doi.org/10.3390/jcm12227104 - 15 Nov 2023
Cited by 3 | Viewed by 2559
Abstract
The use of coronary computed tomography angiography (CCTA) in the setting of stable coronary artery disease is highly recommended for low-risk patients. High-risk patients, such as symptomatic subjects with prior revascularization, are suggested to be investigated with noninvasive functional tests or invasive coronary [...] Read more.
The use of coronary computed tomography angiography (CCTA) in the setting of stable coronary artery disease is highly recommended for low-risk patients. High-risk patients, such as symptomatic subjects with prior revascularization, are suggested to be investigated with noninvasive functional tests or invasive coronary angiography. CCTA is not considered for these patients because of some well-known CCTA artifacts, such as blooming and motion artifacts. However, new technology has allowed us to obtain images with high spatial resolution, overcoming these well-known limitations of CCTA. Furthermore, the introduction of CT-derived fractional flow reserve and stress CT perfusion has made CCTA a comprehensive examination, including anatomical and functional assessments of coronary plaques. Additionally, CCTA allows for plaque characterization, which has become a cornerstone for the optimization of medical therapy, which is not possible with functional tests. Recent evidence has suggested that CCTA could be used with the aim of monitoring revascularization, both after coronary bypass grafts and percutaneous coronary intervention. With this background information, CCTA can also be considered the exam of choice in subjects with a history of revascularization. The availability of a noninvasive anatomic test for patients with previous coronary revascularization and its possible association with functional assessments in a single exam could play a key role in the follow-up management of these subjects, especially considering the rate of false-positive and negative results of noninvasive functional tests. The present review summarizes the main evidence about CCTA and coronary artery bypass grafts, complex percutaneous coronary intervention, and bioresorbable stent implantation. Full article
(This article belongs to the Special Issue Cardiovascular Computed Tomography in Clinical Practice)
Show Figures

Graphical abstract

15 pages, 1209 KiB  
Review
Cardiac Computed Tomography Angiography in CAD Risk Stratification and Revascularization Planning
by Chirag R. Mehta, Aneeqah Naeem and Yash Patel
Diagnostics 2023, 13(18), 2902; https://doi.org/10.3390/diagnostics13182902 - 11 Sep 2023
Viewed by 2151
Abstract
Purpose of Review: Functional stress testing is frequently used to assess for coronary artery disease (CAD) in symptomatic, stable patients with low to intermediate pretest probability. However, patients with highly vulnerable plaque may have preserved luminal patency and, consequently, a falsely negative stress [...] Read more.
Purpose of Review: Functional stress testing is frequently used to assess for coronary artery disease (CAD) in symptomatic, stable patients with low to intermediate pretest probability. However, patients with highly vulnerable plaque may have preserved luminal patency and, consequently, a falsely negative stress test. Cardiac computed tomography angiography (CCTA) has emerged at the forefront of primary prevention screening and has excellent agency in ruling out obstructive CAD with high negative predictive value while simultaneously characterizing nonobstructive plaque for high-risk features, which invariably alters risk-stratification and pre-procedural decision making. Recent Findings: We review the literature detailing the utility of CCTA in its ability to risk-stratify patients with CAD based on calcium scoring as well as high-risk phenotypic features and to qualify the functional significance of stenotic lesions. Summary: Calcium scores ≥ 100 should prompt consideration of statin and aspirin therapy. Spotty calcifications < 3 mm, increased non-calcified plaque > 4 mm3 per mm of the vessel wall, low attenuation < 30 HU soft plaque and necrotic core with a rim of higher attenuation < 130 HU, and a positive remodeling index ratio > 1.1 all confer additive risk for acute plaque rupture when present. Elevations in the perivascular fat attenuation index > −70.1 HU are a strong predictor of all-cause mortality and can further the risk stratification of patients in the setting of a non-to-minimal plaque burden. Lastly, a CT-derived fractional flow reserve (FFRCT) < 0.75 or values from 0.76 to 0.80 in conjunction with additional risk factors is suggestive of flow-limiting disease that would benefit from invasive testing. The wealth of information available through CCTA can allow clinicians to risk-stratify patients at elevated risk for an acute ischemic event and engage in advanced revascularization planning. Full article
Show Figures

Figure 1

20 pages, 34080 KiB  
Article
A Hybrid Model for Cardiac Perfusion: Coupling a Discrete Coronary Arterial Tree Model with a Continuous Porous-Media Flow Model of the Myocardium
by João R. Alves, Lucas A. Berg, Evandro D. Gaio, Bernardo M. Rocha, Rafael A. B. de Queiroz and Rodrigo W. dos Santos
Entropy 2023, 25(8), 1229; https://doi.org/10.3390/e25081229 - 18 Aug 2023
Cited by 1 | Viewed by 1863
Abstract
This paper presents a novel hybrid approach for the computational modeling of cardiac perfusion, combining a discrete model of the coronary arterial tree with a continuous porous-media flow model of the myocardium. The constructive constrained optimization (CCO) algorithm captures the detailed topology and [...] Read more.
This paper presents a novel hybrid approach for the computational modeling of cardiac perfusion, combining a discrete model of the coronary arterial tree with a continuous porous-media flow model of the myocardium. The constructive constrained optimization (CCO) algorithm captures the detailed topology and geometry of the coronary arterial tree network, while Poiseuille’s law governs blood flow within this network. Contrast agent dynamics, crucial for cardiac MRI perfusion assessment, are modeled using reaction–advection–diffusion equations within the porous-media framework. The model incorporates fibrosis–contrast agent interactions and considers contrast agent recirculation to simulate myocardial infarction and Gadolinium-based late-enhancement MRI findings. Numerical experiments simulate various scenarios, including normal perfusion, endocardial ischemia resulting from stenosis, and myocardial infarction. The results demonstrate the model’s efficacy in establishing the relationship between blood flow and stenosis in the coronary arterial tree and contrast agent dynamics and perfusion in the myocardial tissue. The hybrid model enables the integration of information from two different exams: computational fractional flow reserve (cFFR) measurements of the heart coronaries obtained from CT scans and heart perfusion and anatomy derived from MRI scans. The cFFR data can be integrated with the discrete arterial tree, while cardiac perfusion MRI data can be incorporated into the continuum part of the model. This integration enhances clinical understanding and treatment strategies for managing cardiovascular disease. Full article
Show Figures

Figure 1

19 pages, 2056 KiB  
Review
Intravascular Imaging versus Physiological Assessment versus Biomechanics—Which Is a Better Guide for Coronary Revascularization
by Miłosz Starczyński, Stanisław Dudek, Piotr Baruś, Emilia Niedzieska, Mateusz Wawrzeńczyk, Dorota Ochijewicz, Adam Piasecki, Karolina Gumiężna, Krzysztof Milewski, Marcin Grabowski, Janusz Kochman and Mariusz Tomaniak
Diagnostics 2023, 13(12), 2117; https://doi.org/10.3390/diagnostics13122117 - 19 Jun 2023
Viewed by 2675
Abstract
Today, coronary artery disease (CAD) continues to be a prominent cause of death worldwide. A reliable assessment of coronary stenosis represents a prerequisite for the appropriate management of CAD. Nevertheless, there are still major challenges pertaining to some limitations of current imaging and [...] Read more.
Today, coronary artery disease (CAD) continues to be a prominent cause of death worldwide. A reliable assessment of coronary stenosis represents a prerequisite for the appropriate management of CAD. Nevertheless, there are still major challenges pertaining to some limitations of current imaging and functional diagnostic modalities. The present review summarizes the current data on invasive functional and intracoronary imaging assessment using optical coherence tomography (OCT), and intravascular ultrasound (IVUS). Amongst the functional parameters—on top of fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR)—we point to novel angiography-based measures such as quantitative flow ratio (QFR), vessel fractional flow reserve (vFFR), angiography-derived fractional flow reserve (FFRangio), and computed tomography-derived flow fractional reserve (FFR-CT), as well as hybrid approaches focusing on optical flow ratio (OFR), computational fluid dynamics and attempts to quantify the forces exaggerated by blood on the coronary plaque and vessel wall. Full article
(This article belongs to the Section Biomedical Optics)
Show Figures

Figure 1

11 pages, 14227 KiB  
Case Report
Discordance between Invasive and Non-Invasive Coronary Angiography: An In-Depth Functional and Anatomical Analysis
by Shigetaka Kageyama, Kaoru Tanaka, Shinichiro Masuda, Momoko Kageyama, Scot Garg, Adam Updegrove, Johan De Mey, Mark La Meir, Yoshinobu Onuma and Patrick W. Serruys
Biomedicines 2023, 11(3), 913; https://doi.org/10.3390/biomedicines11030913 - 15 Mar 2023
Cited by 1 | Viewed by 2906
Abstract
A 79-year-old male with chronic coronary syndrome with complex coronary artery disease was included in the first-in-man trial of surgical revascularization guided solely by coronary computed tomography angiography (CCTA) and fractional flow reserve derived from CCTA (FFRCT). In CCTA analysis, the [...] Read more.
A 79-year-old male with chronic coronary syndrome with complex coronary artery disease was included in the first-in-man trial of surgical revascularization guided solely by coronary computed tomography angiography (CCTA) and fractional flow reserve derived from CCTA (FFRCT). In CCTA analysis, the patient had calcified three-vessel disease, with a global anatomical SYNTAX score of 27. In contrast, in the initial FFRCT, only the ramus intermediate stenosis was physiologically significant, with no other vessels having an FFRCT ≤ 0.80 (functional SYNTAX score of 2). Discordance between the results of the CCTA and FFRCT necessitated an in-depth analysis by using both invasive and non-invasive coronary angiography. Angiography-derived fractional flow reserve (FFR) confirmed that the stenosis in the proximal left anterior descending artery (LAD) was physiologically significant, while it remained functionally negative in the second assessment of FFRCT. Extensive calcification is the most plausible explanation for the underestimation of the stenosis of proximal LAD in CCTA-derived FFR technology. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

15 pages, 2376 KiB  
Article
A Novel CT Perfusion-Based Fractional Flow Reserve Algorithm for Detecting Coronary Artery Disease
by Xuelian Gao, Rui Wang, Zhonghua Sun, Hongkai Zhang, Kairui Bo, Xiaofei Xue, Junjie Yang and Lei Xu
J. Clin. Med. 2023, 12(6), 2154; https://doi.org/10.3390/jcm12062154 - 9 Mar 2023
Cited by 6 | Viewed by 2835
Abstract
Background: The diagnostic accuracy of fractional flow reserve (FFR) derived from coronary computed tomography angiography (CCTA) (FFR-CT) needs to be further improved despite promising results available in the literature. While an innovative myocardial computed tomographic perfusion (CTP)-derived fractional flow reserve (CTP-FFR) model has [...] Read more.
Background: The diagnostic accuracy of fractional flow reserve (FFR) derived from coronary computed tomography angiography (CCTA) (FFR-CT) needs to be further improved despite promising results available in the literature. While an innovative myocardial computed tomographic perfusion (CTP)-derived fractional flow reserve (CTP-FFR) model has been initially established, the feasibility of CTP-FFR to detect coronary artery ischemia in patients with suspected coronary artery disease (CAD) has not been proven. Methods: This retrospective study included 93 patients (a total of 103 vessels) who received CCTA and CTP for suspected CAD. Invasive coronary angiography (ICA) was performed within 2 weeks after CCTA and CTP. CTP-FFR, CCTA (stenosis ≥ 50% and ≥70%), ICA, FFR-CT and CTP were assessed by independent laboratory experts. The diagnostic ability of the CTP-FFR grouped by quantitative coronary angiography (QCA) in mild (30–49%), moderate (50–69%) and severe stenosis (≥70%) was calculated. The effect of calcification of lesions, grouped by FFR on CTP-FFR measurements, was also assessed. Results: On the basis of per-vessel level, the AUCs for CTP-FFR, CTP, FFR-CT and CCTA were 0.953, 0.876, 0.873 and 0.830, respectively (all p < 0.001). The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of CTP-FFR for per-vessel level were 0.87, 0.88, 0.87, 0.85 and 0.89 respectively, compared with 0.87, 0.54, 0.69, 0.61, 0.83 and 0.75, 0.73, 0.74, 0.70, 0.77 for CCTA ≥ 50% and ≥70% stenosis, respectively. On the basis of per-vessel analysis, CTP-FFR had higher specificity, accuracy and AUC compared with CCTA and also higher AUC compared with FFR-CT or CTP (all p < 0.05). The sensitivity and accuracy of CTP-FFR + CTP + FFR-CT were also improved over FFR-CT alone (both p < 0.05). It also had improved specificity compared with FFR-CT or CTP alone (p < 0.01). A strong correlation between CTP-FFR and invasive FFR values was found on per-vessel analysis (Pearson’s correlation coefficient 0.89). The specificity of CTP-FFR was higher in the severe calcification group than in the low calcification group (p < 0.001). Conclusions: A novel CTP-FFR model has promising value to detect myocardial ischemia in CAD, particularly in mild-to-moderate stenotic lesions. Full article
(This article belongs to the Special Issue Recent Advances in Cardiovascular Imaging 2.0 Edition)
Show Figures

Figure 1

11 pages, 1776 KiB  
Article
Influence of Left Ventricular Diastolic Dysfunction on the Diagnostic Performance of Coronary Computed Tomography Angiography-Derived Fractional Flow Reserve
by Zhixin Xie, Tianlong Wu, Jing Mu, Ping Zhang, Xuan Wang, Tao Liang, Yihan Weng, Jianfang Luo and Huimin Yu
J. Clin. Med. 2023, 12(5), 1724; https://doi.org/10.3390/jcm12051724 - 21 Feb 2023
Viewed by 2080
Abstract
Objectives: Our study aimed to demonstrate the influence of left ventricular (LV) diastolic dysfunction on the diagnostic performance of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR). Methods: One hundred vessels from 90 patients were retrospectively analyzed. All patients underwent echocardiography, coronary computed [...] Read more.
Objectives: Our study aimed to demonstrate the influence of left ventricular (LV) diastolic dysfunction on the diagnostic performance of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR). Methods: One hundred vessels from 90 patients were retrospectively analyzed. All patients underwent echocardiography, coronary computed tomography angiography (CCTA), CT-FFR, invasive coronary angiography (ICA), and fractional flow reserve (FFR). The study population was divided into normal and dysfunction groups according to the LV diastolic function, and the diagnostic performance in both groups was assessed. Results: There was a good correlation between CT-FFR and FFR (R = 0.768 p < 0.001) on a per-vessel basis. The sensitivity, specificity, and accuracy were 82.3%, 81.8%, and 82%, respectively. The sensitivity, specificity, and accuracy were 84.6%, 88.5%, and 87.2% in the normal group and 81%, 77.5%, and 78.7% in the dysfunction group, respectively. CT-FFR showed no statistically significant difference in the AUC in the normal group vs. the dysfunction group (AUC: 0.920 [95% CI 0.787–0.983] vs. 0.871 [95% CI 0.761–0.943], Z = 0.772 p = 0.440). However, there was still a good correlation between CT-FFR and FFR in the normal group (R = 0.767, p < 0.001) and dysfunction group (R = 0.767 p < 0.001). Conclusions: LV diastolic dysfunction had no effect on the diagnostic accuracy of CT-FFR. CT-FFR has good diagnostic performance in both LV diastolic dysfunction and the normal group and can be used as an effective tool for finding lesion-specific ischemia while screening for arterial disease in patients. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

18 pages, 4336 KiB  
Review
Coronary Computed Tomography vs. Cardiac Magnetic Resonance Imaging in the Evaluation of Coronary Artery Disease
by Lukas D. Weberling, Dirk Lossnitzer, Norbert Frey and Florian André
Diagnostics 2023, 13(1), 125; https://doi.org/10.3390/diagnostics13010125 - 30 Dec 2022
Cited by 14 | Viewed by 4309
Abstract
Coronary artery disease (CAD) represents a widespread burden to both individual and public health, steadily rising across the globe. The current guidelines recommend non-invasive anatomical or functional testing prior to invasive procedures. Both coronary computed tomography angiography (cCTA) and stress cardiac magnetic resonance [...] Read more.
Coronary artery disease (CAD) represents a widespread burden to both individual and public health, steadily rising across the globe. The current guidelines recommend non-invasive anatomical or functional testing prior to invasive procedures. Both coronary computed tomography angiography (cCTA) and stress cardiac magnetic resonance imaging (CMR) are appropriate imaging modalities, which are increasingly used in these patients. Both exhibit excellent safety profiles and high diagnostic accuracy. In the last decade, cCTA image quality has improved, radiation exposure has decreased and functional information such as CT-derived fractional flow reserve or perfusion can complement anatomic evaluation. CMR has become more robust and faster, and advances have been made in functional assessment and tissue characterization allowing for earlier and better risk stratification. This review compares both imaging modalities regarding their strengths and weaknesses in the assessment of CAD and aims to give physicians rationales to select the most appropriate modality for individual patients. Full article
Show Figures

Figure 1

16 pages, 1744 KiB  
Article
Diagnostic Performance of On-Site Computed Tomography Derived Fractional Flow Reserve on Non-Culprit Coronary Lesions in Patients with Acute Coronary Syndrome
by Abdelkrim Ahres, Judit Simon, Balazs Jablonkai, Bela Nagybaczoni, Tamas Baranyai, Astrid Apor, Marton Kolossvary, Bela Merkely, Pal Maurovich-Horvat, Balint Szilveszter and Peter Andrassy
Life 2022, 12(11), 1820; https://doi.org/10.3390/life12111820 - 8 Nov 2022
Cited by 4 | Viewed by 2786
Abstract
The role of coronary computed tomography angiography (CCTA) derived fractional flow reserve (CT-FFR) in the assessment of non-culprit lesions (NCL) in patients with acute coronary syndrome (ACS) is debated. In this prospective clinical study, a total of 68 ACS patients with 89 moderate [...] Read more.
The role of coronary computed tomography angiography (CCTA) derived fractional flow reserve (CT-FFR) in the assessment of non-culprit lesions (NCL) in patients with acute coronary syndrome (ACS) is debated. In this prospective clinical study, a total of 68 ACS patients with 89 moderate (30–70% diameter stenosis) NCLs were enrolled to evaluate the diagnostic accuracy of on-site CT-FFR compared to invasive fractional flow reserve (FFRi) and dobutamine stress echocardiography (DSE) as reference standards. CT-FFR and FFRi values ≤0.80, as well as new or worsening wall motion abnormality in ≥2 contiguous segments on the supplying area of an NCL on DSE, were considered positive for ischemia. Sensitivity, specificity, positive, and negative predictive value of CT-FFR relative to FFRi and DSE were 51%, 89%, 75%, and 74% and 37%, 77%, 42%, and 74%, respectively. CT-FFR value (β = 0.334, p < 0.001) and CT-FFR drop from proximal to distal measuring point [(CT-FFR drop), β = −0.289, p = 0.002)] were independent predictors of FFRi value in multivariate linear regression analysis. Based on comparing their receiver operating characteristics area under the curve (AUC) values, CT-FFR value and CT-FFR drop provided better discriminatory power than CCTA-based minimal lumen diameter stenosis to distinguish between an NCL with positive and negative FFRi [0.77 (95% Confidence Intervals, CI: 0.67–0.86) and 0.77 (CI: 0.67–0.86) vs. 0.63 (CI: 0.52–0.73), p = 0.029 and p = 0.043, respectively]. Neither CT-FFR value nor CT-FFR drop was predictive of regional wall motion score index at peak stress (β = −0.440, p = 0.441 and β = 0.403, p = 0.494) or was able to confirm ischemia on the territory of an NCL revealed by DSE (AUC = 0.54, CI: 0.43–0.64 and AUC = 0.55, CI: 0.44–0.65, respectively). In conclusion, on-site CT-FFR is superior to conventional CCTA-based anatomical analysis in the assessment of moderate NCLs; however, its diagnostic capacity is not sufficient to make it a gatekeeper to invasive functional evaluation. Moreover, based on its comparison with DSE, CT-FFR might not yield any information on the microvascular dysfunction in the territory of an NCL. Full article
(This article belongs to the Collection Advances in Coronary Heart Disease)
Show Figures

Figure 1

Back to TopTop