Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = CR-hvKP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2497 KiB  
Article
Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae
by Yanjun Lu, Chengju Fang, Li Xiang, Ming Yin, Lvxin Qian, Yi Yan, Luhua Zhang and Ying Li
Microorganisms 2025, 13(7), 1544; https://doi.org/10.3390/microorganisms13071544 - 30 Jun 2025
Viewed by 288
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our [...] Read more.
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our knowledge, depolymerases targeting K. pneumoniae K54-type strains have rarely been identified. Here, we identified and characterized three novel capsule depolymerases, Dep_C, Dep_Y, and Dep_Z, derived from three different K. pneumoniae phages, which retained robust activity across a broad pH range (pH 3.0–12.0) and demonstrated thermal stability up to 50 °C. These depolymerases could efficiently digest the CPS of K. pneumoniae K54-serotype strains, significantly inhibit biofilm formation, and remove their mature biofilms. Although no bactericidal activity was detected, these depolymerases rendered host bacteria susceptible to serum complement-mediated killing. We further demonstrate that Dep_C, Dep_Y, and Dep_Z can effectively and significantly prolong the survival time of mice in a pneumonia model infected with K54-type K. pneumoniae and reduce the colonization and virulence of the bacteria in the mice. These findings indicate that depolymerases Dep_C, Dep_Y, and Dep_Z could increase bacterial susceptibility to host immune responses of hvKp to the host through their degradation effect on the CPS. In conclusion, our study demonstrates that the three capsule depolymerases are promising antivirulent agents to combat CR-hvKp infections. Full article
Show Figures

Figure 1

15 pages, 2960 KiB  
Article
Genome Characterization of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae Strains, Carrying Hybrid Resistance-Virulence IncHI1B/FIB Plasmids, Isolated from an Egyptian Pediatric ICU
by Heba A. Hammad, Radwa Abdelwahab, Douglas F. Browning and Sherine A. Aly
Microorganisms 2025, 13(5), 1058; https://doi.org/10.3390/microorganisms13051058 - 1 May 2025
Viewed by 886
Abstract
Despite the increased reporting of Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) in Egypt, there is a paucity of information regarding the molecular characteristics of such strains. Herein, we present the genome sequence of two CR-hvKp strains, K22 and K45, which were isolated from VAP [...] Read more.
Despite the increased reporting of Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) in Egypt, there is a paucity of information regarding the molecular characteristics of such strains. Herein, we present the genome sequence of two CR-hvKp strains, K22 and K45, which were isolated from VAP (ventilator-associated-pneumonia) patients admitted to pediatric ICU at Assiut University Children’s Hospital, Egypt. K22 and K45 isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing. Genomic analysis was performed to characterize each strain, determining their plasmids, antimicrobial resistance (AMR) genes, and virulence determinants. K22 possessed an extensive drug resistance phenotype (XDR), whilst K45 exhibited a multidrug resistance phenotype (MDR), with genome sequencing revealing the presence of a diverse array of AMR genes. Both strains were resistant to the carbapenem antibiotic imipenem, carrying the OXA-48 carbapenemase, with K22 additionally possessing an NDM-1 carbapenemase. Each strain was considered high-risk, with K22 and K45 respectively belonging to sequence types ST383 and ST14 and possessing virulence genes implicated in hypervirulence (e.g., iucABCD-iutA and rmpA). Importantly, both strains carried multiple plasmid replicons, including an AMR/virulence IncHI1B/FIB hybrid plasmid and MDR IncL/M plasmids. This report highlights the critical role of plasmids in the evolution of virulent K. pneumoniae strains and suggests the circulation of an IncHI1B/FIB hybrid plasmid, simultaneously disseminating AMR and hypervirulence, amongst K. pneumoniae strains within Assiut University Children’s Hospital. Full article
(This article belongs to the Special Issue Virulence and Resistance of Klebsiella pneumoniae, 2nd Edition)
Show Figures

Figure 1

25 pages, 3507 KiB  
Review
Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health
by Jiaying Zhu, Taoyu Chen, Yanmin Ju, Jianjun Dai and Xiangkai Zhuge
Pharmaceuticals 2024, 17(9), 1206; https://doi.org/10.3390/ph17091206 - 12 Sep 2024
Cited by 14 | Viewed by 4849
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and [...] Read more.
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies’ application and implementation of the One Health strategy. Full article
(This article belongs to the Special Issue Development of Antibacterial Drugs to Combat Drug-Resistant Bacteria)
Show Figures

Graphical abstract

11 pages, 1861 KiB  
Article
RETRACTED: Drug Resistance and Molecular Characteristics of Carbapenem-Resistant OXA-48-Producing Klebsiella pneumoniae Strains in Hainan, China
by Min Ye, Lei Liu, Bin Liu, Xiangdong Zhou and Qi Li
Microorganisms 2024, 12(1), 49; https://doi.org/10.3390/microorganisms12010049 - 27 Dec 2023
Cited by 1 | Viewed by 1615 | Retraction
Abstract
Background: The emergence and global spread of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) are of great concern to health services worldwide. These β-lactamases hydrolyze almost all β-lactams, are plasmid-encoded, and are easily transferable among bacterial species. They are mostly of the KPC types in [...] Read more.
Background: The emergence and global spread of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) are of great concern to health services worldwide. These β-lactamases hydrolyze almost all β-lactams, are plasmid-encoded, and are easily transferable among bacterial species. They are mostly of the KPC types in CR-hvKp. OXA-48-producing hvKP strains have been rarely reported in the literature. Methods: OXA-48-producing hvKP strains were collected from clinical specimens at the First Affiliated Hospital of Hainan Medical University from January 2022 to March 2023. Hypervirulent strains were tested for virulence in a mouse lethality study and underwent whole genome sequencing to identify genomic features. Results: A total of 42 unique OXA-48-bearing K. pneumoniae strains were identified, including three CR-hvKP strains (KP2683-1, NCRE61, and KP2185), which were isolated from bacteremia, pulmonary abscess, and liver abscess separately. The three CR-hvKP strains belonged to two different clones of ST11 KL64 (KP2185 and NCRE61) and ST23 K1 (KP2683-1). The KP2683-1 strain had the highest virulence. Whole genome sequencing analysis indicated that NCRE61 and KP2185 acquired IncFIB-type plasmids with a set of virulence genes (iroBCDN, iucABCD, iutA, rmpA, and rmpA2), while KP2683-1 acquired an IncL-type blaOXA-48-harboring plasmid. Consecutive cultures showed that the blaOXA-48-harboring plasmids were highly stable in the three hvKP strains and could be transmitted to Escherichia coli J53 by conjugation. The drug susceptibility testing results show that Ceftazidime/avibactam is sensitive for OXA-48-producing hvKP. Conclusions: Our study highlighted the two evolutionary pathways of OXA-48-producing hvKP strains and confirmed their virulence through in vivo testing. Ceftazidime/avibactam may be a viable option for treating OXA-48-producing hvKP strains. Full article
(This article belongs to the Special Issue Advances in Antibiotic and Drug-Resistance Mechanisms)
Show Figures

Figure 1

11 pages, 5740 KiB  
Article
Molecular Epidemiology of Antimicrobial Resistance, Virulence and Capsular Serotypes of Carbapenemase-Carrying Klebsiella pneumoniae in China
by Lina Zhao, Xinxin Xia, Ting Yuan, Junying Zhu, Zhen Shen and Min Li
Antibiotics 2022, 11(8), 1100; https://doi.org/10.3390/antibiotics11081100 - 13 Aug 2022
Cited by 13 | Viewed by 2678
Abstract
This study analyzed genomic data of 4643 strains of carbapenemase-carrying Klebsiella pneumoniae (KPN) in China by using the Kleborate software package. The data showed rich diversity in carbapenemase-carrying KPN genomes, which contain not only 152 sequence types but also 90 capsular serotypes. In [...] Read more.
This study analyzed genomic data of 4643 strains of carbapenemase-carrying Klebsiella pneumoniae (KPN) in China by using the Kleborate software package. The data showed rich diversity in carbapenemase-carrying KPN genomes, which contain not only 152 sequence types but also 90 capsular serotypes. In 2013, the transfer of carbapenemase to hypervirulent Klebsiella pneumoniae (HvKP) of KL1 and KL2 occurred, and since 2014, the propagation of carbapenemase into mammals, poultry, and insects has been detected. The ST11 capsular serotype had a reversal of the prevalence of KL47 and KL64 in 2016, with KL64 replacing KL47 as the dominant serotype. Colibactin is a very suitable indicator to differentiate KL1-type HvKP and classic Klebsiella pneumoniae. The most prevalent yersiniabactin of KL1 is ybt1 ICEKp10, and that of ST11 carbapenem-resistant KPN(ST11-CRKP) is ybt9 ICEKp3. The virulence genes of KL1 carbapenem-resistant hypervirulent KPN (KL1-CRHvKP), as well as ST65- and ST86-type KL2-CRHvKP, were not lost after carbapenemase was obtained. Full article
Show Figures

Figure 1

12 pages, 3405 KiB  
Article
Clinical and Molecular Analysis of ST11-K47 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae: A Strain Causing Liver Abscess
by Zhen Cai, Tianye Jia, Mingfang Pu, Shuyong Zhang, Jingxia Zhang, Ronghua Geng, Suming Chen, Yahao Li, Huahao Fan, Yigang Tong and Fen Qu
Pathogens 2022, 11(6), 657; https://doi.org/10.3390/pathogens11060657 - 7 Jun 2022
Cited by 10 | Viewed by 3039
Abstract
Klebsiella pneumoniae has been the predominant pathogen of liver abscess, but ST11-K47 carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has rarely been studied as the causative organism. We identified an ST11-K47 CR-hvKP (HvKp-su1) from the drainage fluid of a liver abscess in a Chinese man [...] Read more.
Klebsiella pneumoniae has been the predominant pathogen of liver abscess, but ST11-K47 carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has rarely been studied as the causative organism. We identified an ST11-K47 CR-hvKP (HvKp-su1) from the drainage fluid of a liver abscess in a Chinese man who was diagnosed with liver abscess combined with diabetes, pneumonia, pleural infection, abdominal abscess, and splenic abscess. HvKp-su1 was non-hypermucoviscous and lacked the magA and rmpA genes and pLVPK plasmid but exhibited high virulence, with a high mortality rate (90%) to wax moth larvae (G. mellonella), similar to the hypervirulent Klebsiella pneumoniae ATCC43816 (91.67%). Whole-genome sequencing and bioinformatics analysis indicated that HvKp-su1 possesses a plasmid similar to a type of pLVPK-like plasmid (JX-CR-hvKP-2-P2), which is an uncommon plasmid in CR-hvKP. HvKp-su1 carried multiple resistance genes, including blaKPC-2. blaTEM-1, blaSHV-55, and blaCTX-M-65; hypervirulence genes such as aerobactin (iutA), salmochelin (iroEN), and yersiniabactin (ybtAEPQSTUX); and the type 3 fimbriae-encoding system (mrkACDF). Moreover, v_5377 and v_5429 (cofT, CFA/III (CS8)) located on plasmid 1 were simultaneously predicted to be virulence genes. After the long-term combination use of antibiotics, the patient successfully recovered. In summary, our study clarified the clinical and molecular characteristics of a rare ST11-K47 CR-hvKP (HvKp-su1), raising great concerns about the emergence of ST11-K47 CR-hvKP with multidrug resistance and hypervirulence, and providing insights into the control and treatment of liver abscess caused by ST11-K47 CR-hvKP. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

12 pages, 4522 KiB  
Article
High-Temperature Oxidation Behavior of Plasma-Sprayed CoCrAlTaY-30Al2O3 Cermet Coating at 1050 °C
by Zimin Zhou, Wen Huang and Zhaolu Xue
Coatings 2022, 12(6), 743; https://doi.org/10.3390/coatings12060743 - 29 May 2022
Cited by 1 | Viewed by 1896
Abstract
Cermet coatings with ceramic and metal characteristics will play an increasingly important role in extending the service life of critical components in harsh service environments. In this paper, CoCrAlTaY-30Al2O3 (wt.%) cermet coating was prepared by air plasma spraying technique. The [...] Read more.
Cermet coatings with ceramic and metal characteristics will play an increasingly important role in extending the service life of critical components in harsh service environments. In this paper, CoCrAlTaY-30Al2O3 (wt.%) cermet coating was prepared by air plasma spraying technique. The effect of powder feeding rate on the microstructure and mechanical properties of the coating and its high-temperature oxidation behavior was investigated. The results showed that the CoCrAlTaY-30Al2O3 spraying powder mainly consisted of Al5Co2, α-Al2O3, Co, Cr7C3, and TaC in five phases. The microstructure of cermet coating was uniform and its porosity was relatively low. The coating was mainly composed of Al5Co2, Cr, and Al2O3 phases, and the change of powder feeding rate had no obvious effect on the phase composition of the coating. When the powder feeding rate was 32 g/min, the minimum porosity of the coating was (3.68 ± 0.86)%, and the maximum Vickers hardness and binding strength were (664.9 ± 55.9) HV0.3 and (78.6 ± 6.6) MPa, respectively. The oxidation rate constant kp1 of the coating at 1050 °C was 0.066 mg2∙cm−4∙h−1, and the fitted curve R2 value was 0.99547. In the oxidization initial stages, the alloy elements Co, Al, and Cr in the cermet coating were rapidly oxidized to form CoO, Al2O3, and Cr2O3. Then Al2O3 and Cr2O3 reacted with CoO to form Co(Al,Cr)2O4 spinel oxides. The θ-Al2O3 phase was formed after initial oxidation while the θ-Al2O3 phase was completely transformed into α-Al2O3 after 200 h. The oxide film mainly contained Co(Cr,Al)2O4, Cr2O3, and α-Al2O3 phases. Full article
Show Figures

Figure 1

18 pages, 2730 KiB  
Article
Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2)
by Hisham N. Altayb, Hana S. Elbadawi, Othman Baothman, Imran Kazmi, Faisal A. Alzahrani, Muhammad Shahid Nadeem, Salman Hosawi and Kamel Chaieb
Antibiotics 2022, 11(5), 596; https://doi.org/10.3390/antibiotics11050596 - 28 Apr 2022
Cited by 27 | Viewed by 4055
Abstract
Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hypermucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic data were compared to the genomes of the [...] Read more.
Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hypermucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic data were compared to the genomes of the hypervirulent and typical K. pneumoniae strains. The K. pneumoniae strain was isolated from a patient with a recurrent urinary tract infection, and then the string test was used for the detection of the hypermucoviscosity phenotype. Whole-genome sequencing was conducted using Illumina, and bioinformatics analysis was performed for the prediction of the isolate resistome, virulome, and phylogenetic analysis. The isolate was identified as hypermucoviscous, type 2 (K2) capsular polysaccharide, ST14, and multidrug-resistant (MDR), showing resistance to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin, and nitrofurantoin. The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B, pECW602, pMDR, and p3K157) that carried antimicrobial resistance genes (ARGs) (blaOXA-1,blaCTX-M-15, sul2, APH(3″)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). Moreover, two chromosomally mediated ARGs (fosA6 and SHV-28) were identified. Virulome prediction revealed the presence of 19 fimbrial proteins, one aerobactin (iutA) and two salmochelin (iroE and iroN). Four secretion systems (T6SS-I (13), T6SS-II (9), T6SS-III (12), and Sci-I T6SS (1)) were identified. Interestingly, the isolate lacked the known hypermucoviscous regulators (rmpA/rmpA2) but showed the presence of other RcsAB capsule regulators (rcsA and rcsB). This study documented the presence of a rare MDR hvKP with hypermucoviscous regulators and lacking the common capsule regulators, which needs more focus to highlight their epidemiological role. Full article
(This article belongs to the Special Issue Genomic Analysis of Antibiotics Resistance in Pathogens)
Show Figures

Figure 1

13 pages, 1464 KiB  
Article
Emergence of Hybrid Resistance and Virulence Plasmids Harboring New Delhi Metallo-β-Lactamase in Klebsiella pneumoniae in Russia
by Polina Starkova, Irina Lazareva, Alisa Avdeeva, Ofeliia Sulian, Darya Likholetova, Vladimir Ageevets, Marina Lebedeva, Vladimir Gostev, Julia Sopova and Sergey Sidorenko
Antibiotics 2021, 10(6), 691; https://doi.org/10.3390/antibiotics10060691 - 9 Jun 2021
Cited by 33 | Viewed by 4006
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a new threat to healthcare. In this study, we analyzed nine CR-hvKp isolates of different sequence-types (ST) recovered from patients with nosocomial infections in two hospitals in Saint Petersburg. Whole-genome sequencing showed that eight [...] Read more.
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a new threat to healthcare. In this study, we analyzed nine CR-hvKp isolates of different sequence-types (ST) recovered from patients with nosocomial infections in two hospitals in Saint Petersburg. Whole-genome sequencing showed that eight of them harbored large mosaic plasmids carrying resistance to carbapenems and hypervirulence simultaneously, and four different types of hybrid plasmids were identified. BLAST analysis showed a high identity with two hybrid plasmids originating in the UK and Czech Republic. We demonstrated that hybrid plasmids emerged due to the acquisition of resistance genes by virulent plasmids. Moreover, one of the hybrid plasmids carried a novel New Delhi metallo-beta-lactamase (NDM) variant, differing from NDM-1 by one amino acid substitution (D130N), which did not provide significant evolutionary advantages compared to NDM-1. The discovery of structurally similar plasmids in geographically distant regions suggests that the actual distribution of hybrid plasmids carrying virulence and resistance genes is much wider than expected. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

14 pages, 2898 KiB  
Article
Molecular Investigation of Klebsiella pneumoniae from Clinical Companion Animals in Beijing, China, 2017–2019
by Zhenbiao Zhang, Lei Lei, Haixia Zhang, Hegen Dai, Yu Song, Lei Li, Yang Wang and Zhaofei Xia
Pathogens 2021, 10(3), 271; https://doi.org/10.3390/pathogens10030271 - 27 Feb 2021
Cited by 27 | Viewed by 4437
Abstract
This work is aimed to elucidate the prevalence and characteristics of antimicrobial resistance, virulence, and molecular typing in Klebsiella pneumoniae from clinical companion animals in Beijing, China. In total, 105 K. pneumoniae (2.0%) isolates were recovered from 5359 samples (dogs, n = 3356; [...] Read more.
This work is aimed to elucidate the prevalence and characteristics of antimicrobial resistance, virulence, and molecular typing in Klebsiella pneumoniae from clinical companion animals in Beijing, China. In total, 105 K. pneumoniae (2.0%) isolates were recovered from 5359 samples (dogs, n = 3356; cats, n = 2003). All tested isolates exhibited high resistance to amoxicillin-clavulanate (74.3%). Moreover, resistance rates in dog isolates (2.1%) were significantly higher than in cat isolates (0.9%); however, the rate of multidrug-resistance (MDR) was 57.1% and the MDR prevalence in cats was significantly higher than dogs. Whole-genome sequencing demonstrated plasmids IncX4 and IncFIA (HI1)/FII(K) carried mcr-1 (n = 1) and mcr-8 (n = 1), but blaOXA-181 (n = 1) and blaNDM-5 (n = 4) were harbored in IncX3-type plasmids, and the above genes were in different isolates. The most prevalent sequence types (STs) in companion animals were ST1 (n = 9) and ST37 (n = 9). Compared to National Center for Biotechnology Information (NCBI) data on human K. pneumoniae, resistance genes blaCTX-M and blaTEM were more prevalent in human isolates; however, aac(6′)-Ib-cr and oqxAB showed a higher prevalence in companion animals. Hypermucoviscosity was reported in 9 (8.6%) isolates, whereas 64 isolates (61.0%) were hypervirulent K. pneumoniae (hvKP) via the Galleria mellonella. These findings validate the high risk of K. pneumonia and necessitate its relevant control in pet clinics. Full article
Show Figures

Figure 1

Back to TopTop