Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = BeeMLV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4881 KiB  
Article
Identification of Twenty-Two New Complete Genome Sequences of Honeybee Viruses Detected in Apis mellifera carnica Worker Bees from Slovenia
by Laura Šimenc Kramar and Ivan Toplak
Insects 2024, 15(11), 832; https://doi.org/10.3390/insects15110832 - 24 Oct 2024
Viewed by 1214
Abstract
In this study, honeybee viruses were identified in naturally infected honeybee colonies (Apis mellifera carnica). From nine selected samples of clinically affected and ten samples of healthy honeybee colonies, different strains of honeybee viruses were first detected using quantitative real-time RT-PCR [...] Read more.
In this study, honeybee viruses were identified in naturally infected honeybee colonies (Apis mellifera carnica). From nine selected samples of clinically affected and ten samples of healthy honeybee colonies, different strains of honeybee viruses were first detected using quantitative real-time RT-PCR methods. Twenty-two nucleotide sequences of the complete genomes of honeybee viruses were identified using the Illumina Next-Generation Sequencing (NGS) method: acute bee paralysis virus (ABPV) (n = 4), black queen cell virus (BQCV) (n = 3), chronic bee paralysis virus (CBPV) (n = 2), deformed wing virus (DWV) (n = 5), Lake Sinai virus (LSV) (n = 4), sacbrood bee virus (SBV) (n = 1), Apis rhabdovirus-1 (ARV-1) (n = 1), bee macula-like virus (BeeMLV) (n = 1) and Hubei partiti-like virus 34 (HPLV34) (n = 1). The nucleotide sequences of ABPV, BQCV, DWV and SBV are the first complete genomes of these viruses identified in Slovenia and they represent an important contribution to our understanding of the genetic diversity of honeybee viruses. ARV-1, BeeMLV and HPLV34 were detected and sequenced for the first time in Slovenia. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

22 pages, 5653 KiB  
Article
Viruses in the Invasive Hornet Vespa velutina
by Anne Dalmon, Philippe Gayral, Damien Decante, Christophe Klopp, Diane Bigot, Maxime Thomasson, Elisabeth A Herniou, Cédric Alaux and Yves Le Conte
Viruses 2019, 11(11), 1041; https://doi.org/10.3390/v11111041 - 8 Nov 2019
Cited by 47 | Viewed by 6580
Abstract
The Asian yellow-legged hornet Vespa velutina nigrithorax, a major predator of honeybees, is spreading in Europe in part due to a lack of efficient control methods. In this study, as a first step to identify biological control agents, we characterized viral RNA [...] Read more.
The Asian yellow-legged hornet Vespa velutina nigrithorax, a major predator of honeybees, is spreading in Europe in part due to a lack of efficient control methods. In this study, as a first step to identify biological control agents, we characterized viral RNA sequences present in asymptomatic or symptomatic hornets. Among 19 detected viruses, the honey bee virus Deformed wing virus-B was predominant in all the samples, particularly in muscles from the symptomatic hornet, suggesting a putative cause of the deformed wing symptom. Interestingly, two new viruses closely related to Acyrthosiphon pisum virus and Himetobi P virus and viruses typically associated with honey bees, Acute bee paralysis virus and Black queen cell virus, were detected in the brain and muscles, and may correspond to the circulation and possible replication forms of these viruses in the hornet. Aphid lethal paralysis virus, Bee Macula-like virus, and Moku virus, which are known to infect honey bees, were also identified in the gut virus metagenome of hornets. Therefore, our study underlined the urgent need to study the host range of these newly discovered viruses in hornets to determine whether they represent a new threat for honey bees or a hope for the biocontrol of V. velutina. Full article
(This article belongs to the Special Issue Advances in Honey Bee Virus Research)
Show Figures

Figure 1

6 pages, 170 KiB  
Editorial
Special Issue: Honey Bee Viruses
by Sebastian Gisder and Elke Genersch
Viruses 2015, 7(10), 5603-5608; https://doi.org/10.3390/v7102885 - 26 Oct 2015
Cited by 25 | Viewed by 9498
Abstract
Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for [...] Read more.
Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. Full article
(This article belongs to the Special Issue Honeybee Viruses)
17 pages, 737 KiB  
Article
Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor
by Joachim R. De Miranda, R. Scott Cornman, Jay D. Evans, Emilia Semberg, Nizar Haddad, Peter Neumann and Laurent Gauthier
Viruses 2015, 7(7), 3586-3602; https://doi.org/10.3390/v7072789 - 6 Jul 2015
Cited by 56 | Viewed by 9768
Abstract
Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from [...] Read more.
Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV). Full article
(This article belongs to the Special Issue Honeybee Viruses)
Show Figures

Graphical abstract

Back to TopTop