Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (173)

Search Parameters:
Keywords = Bayesian phylogeny

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6590 KiB  
Article
Comparative Analysis of the Complete Chloroplast Genomes of Eight Salvia Medicinal Species: Insights into the Deep Phylogeny of Salvia in East Asia
by Yan Du, Yang Luo, Yuanyuan Wang, Jiaxin Li, Chunlei Xiang and Meiqing Yang
Curr. Issues Mol. Biol. 2025, 47(7), 493; https://doi.org/10.3390/cimb47070493 - 27 Jun 2025
Viewed by 297
Abstract
Salvia, a medicinally and economically important genus, is widely used in traditional medicine, agriculture, and horticulture. This study compares the chloroplast genomes of eight East Asian Salvia species to assess genetic diversity, structural features, and evolutionary relationships. Complete chloroplast genomes were sequenced, [...] Read more.
Salvia, a medicinally and economically important genus, is widely used in traditional medicine, agriculture, and horticulture. This study compares the chloroplast genomes of eight East Asian Salvia species to assess genetic diversity, structural features, and evolutionary relationships. Complete chloroplast genomes were sequenced, annotated, and analyzed for gene content, codon usage, and repetitive sequences. Phylogenetic relationships were reconstructed using Maximum Likelihood, Maximum Parsimony and Bayesian inference. The genomes exhibited a conserved quadripartite structure (151,081–152,678 bp, GC content 37.9–38.1%), containing 114 unique genes with consistent arrangement. Codon usage favored A/T endings, with leucine (Leu) most frequent and cysteine (Cys) least. We identified 281 long sequence repeats (LSRs) and 345 simple sequence repeats (SSRs), mostly in non-coding regions. Comparative analysis revealed five hypervariable regions (trnH-psbA, rbcL-accD, petA-psbJ, rpl32-trnL, ycf1) as potential molecular markers. Phylogenetic analysis confirmed the monophyly of East Asian Salvia, dividing them into five clades, with Sect. Sonchifoliae basal. While G1, G3, and G8 were monophyletic, G5 and G6 were paraphyletic, and the G7-G8 relationship challenged traditional classifications. The genomic evidence provides crucial insights for resolving long-standing taxonomic uncertainties and refining the classification system of Salvia. These findings suggest a complex evolutionary history involving hybridization and incomplete lineage sorting, providing valuable genomic insights for Salvia phylogeny, taxonomy, and conservation. Full article
Show Figures

Figure 1

14 pages, 1609 KiB  
Article
Comparative Analysis of Microtendipes Mitogenomes (Diptera: Chironomidae) and Their Phylogenetic Implications
by Chao Song, Yiyi Wang, Wenji Wang, Teng Lei, Xin Qi and Luxian Li
Diversity 2025, 17(6), 424; https://doi.org/10.3390/d17060424 - 16 Jun 2025
Viewed by 643
Abstract
Insect mitochondrial genomes are vital to understanding evolutionary relationships and identifying species. This study focused on Microtendipes (Chironomidae), a genus with unresolved phylogenetic positioning and cryptic species challenges. We sequenced and analyzed eight mitogenomes from five Microtendipes species, integrating 23 published [...] Read more.
Insect mitochondrial genomes are vital to understanding evolutionary relationships and identifying species. This study focused on Microtendipes (Chironomidae), a genus with unresolved phylogenetic positioning and cryptic species challenges. We sequenced and analyzed eight mitogenomes from five Microtendipes species, integrating 23 published Chironominae mitogenomes to reconstruct phylogenies using Maximum Likelihood and Bayesian Inference. The mitogenomes exhibited conserved gene arrangements but variable control region lengths (338–1266 bp) and high AT content (94.14–96.42% in control regions). Our results show that Microtendipes species may be a separate group within the subfamily, while also supporting the monophyly of the Harnischia, Polypedilum, and Chironomus complexes. The monophyly of Microtendipes bimaculus was weakly supported, which may demonstrate the presence of two potential cryptic species. Notably, larval morphology-based species groupings conflicted with the molecular data, suggesting that classifications derived from larval morphological traits may be unreliable. This study advances the evolutionary understanding of Chironomidae and underscores the limitations of single-gene barcodes in species-rich genera. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

16 pages, 2138 KiB  
Article
The Divergence History of Two Japanese Torreya Taxa (Taxaceae): Implications for Species Diversification in the Japanese Archipelago
by Qian Ou, Xin Huang, Dingguo Pan, Shulan Wang, Yuting Huang, Sisi Lu, Yujin Wang and Yixuan Kou
Plants 2025, 14(10), 1537; https://doi.org/10.3390/plants14101537 - 20 May 2025
Viewed by 462
Abstract
The Japanese archipelago as a continental island of the Eurasia continent and harboring high levels of plant species diversity provides an ideal geographical setting for investigating vicariant allopatric speciation due to the sea-level fluctuations associated with climatic oscillations during the Quaternary. In this [...] Read more.
The Japanese archipelago as a continental island of the Eurasia continent and harboring high levels of plant species diversity provides an ideal geographical setting for investigating vicariant allopatric speciation due to the sea-level fluctuations associated with climatic oscillations during the Quaternary. In this study, three chloroplast DNA regions and 14 nuclear loci were sequenced for 31 individuals from three populations of Torreya nucifera var. nucifera and 52 individuals from three populations of T. nucifera var. radicans. Population genetic analyses (Network, STRUCTURE and phylogeny) revealed that the genetic boundaries of the two varieties are distinct, with high genetic differentiation (FST) of 0.9619 in chloroplast DNA and 0.6543 in nuclear loci. The relatively ancient divergence times between the two varieties were estimated to 3.03 Ma by DIYABC and 1.77 Ma by IMa2 when dated back to the late Pliocene and the early Pleistocene, respectively. The extremely weak gene flow (2Nm = 0.1) between the two varieties was detected by IMa2, which might be caused by their population expansion since the early Pleistocene (~2.0 Ma) inferred in the Bayesian skyline plots and DIYABC. Niche modeling showed that the two varieties had significant ecological differentiation (p < 0.001) since the Last Interglacial even earlier. These results demonstrate that vicariant allopatric speciation due to sea-level fluctuations may be a common mode of speciation in the Japanese archipelago. This finding provides insights into the understanding of species diversification in the Japanese Archipelago and even East Asian flora under climatic oscillations during the Quaternary. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

14 pages, 3412 KiB  
Article
The Complete Mitochondrial Genome of Petalocephala arcuata Cai Et Kuoh, 1992 (Hemiptera: Cicadellidae: Ledrinae: Petalocephalini) and Its Phylogenetic Implications
by Yujian Li, Yihong Guo, Ran Li, Yongcheng Liu, Chao Xue, Lina Jiang, Sai Jiang, Wei Wang and Xianfeng Yi
Genes 2025, 16(5), 567; https://doi.org/10.3390/genes16050567 - 10 May 2025
Viewed by 481
Abstract
Background/Aims: Ledrinae comprises about 460 described species across five tribes and represents an early-branching, morphologically distinctive lineage of leafhoppers, yet its intra-subfamilial relationships remain ambiguous owing to limited mitogenomic sampling. Here, we sequence and annotate the complete mitochondrial genome of Petalocephala arcuata—only [...] Read more.
Background/Aims: Ledrinae comprises about 460 described species across five tribes and represents an early-branching, morphologically distinctive lineage of leafhoppers, yet its intra-subfamilial relationships remain ambiguous owing to limited mitogenomic sampling. Here, we sequence and annotate the complete mitochondrial genome of Petalocephala arcuata—only the 18th Ledrinae mitogenome—to broaden taxon coverage within the genus and furnish critical molecular data for rigorously testing Ledrinae monophyly and refining tribal and genus level phylogenetic hypotheses. Methods: In this study, we sequenced and annotated the complete mitochondrial genome of P. arcuata via Illumina sequencing and de novo assembly, and reconstructed the phylogeny of 62 Cicadellidae species using maximum likelihood and Bayesian inference methods. Results: The 14,491 bp circular mitogenome of P. arcuata contains 37 genes with 77.4% A+T. All PCGs use ATN start codons except ND5 (TTG), and codon usage is A or U biased. Of 22 tRNAs, only trnS1 lacks a DHU arm, while the others adopt the canonical cloverleaf structure. Bayesian inference and maximum likelihood analyses produced broadly congruent topologies with mostly high nodal support, recovering Ledrinae as monophyletic and clustering all Petalocephala species into a well-supported clade. Conclusions: In this study, we enriched the molecular resources for the genus Petalocephala by sequencing, annotating, and analyzing the complete mitochondrial genome of P. arcuata. Phylogenetic reconstructions based on these genomic data align closely with previous morphological diagnoses, further confirming the monophyly of the genus Petalocephala. Full article
Show Figures

Figure 1

13 pages, 2545 KiB  
Article
Mitochondrial Genomes of the Robberflies Clephydroneura jiangxiensis and Maira xizangensis (Diptera: Asilidae) and Phylogeny of Three Superfamilies
by Keyao Zhang, Junhui Lu and Sheng-Quan Xu
Genes 2025, 16(5), 561; https://doi.org/10.3390/genes16050561 - 8 May 2025
Viewed by 503
Abstract
Background: Asilomorpha, an infraorder of predatory Diptera (Brachycera), is of significant evolutionary interest due to their remarkable ecological diversity, broad size range, and specialized feeding behaviors. However, phylogenetic studies of this group have been limited by sampling challenges. Methods: In this study, we [...] Read more.
Background: Asilomorpha, an infraorder of predatory Diptera (Brachycera), is of significant evolutionary interest due to their remarkable ecological diversity, broad size range, and specialized feeding behaviors. However, phylogenetic studies of this group have been limited by sampling challenges. Methods: In this study, we sequenced the complete mitochondrial genomes of two Chinese endemic species, Clephydroneura jiangxiensis (C. jiangxiensis) and Maira xizangensis (M. xizangensis), using whole-genome random sequencing. By integrating these novel data with published sequences from NCBI, we reconstructed the phylogeny of three superfamilies (Asiloidea, Empidoidea, and Nemestrinoidea). Results: Both mitochondrial genomes exhibit the typical 37 genes (13 protein-coding genes, 22 tRNAs, and 2 rRNAs) and display pronounced AT bias. Congruent results from maximum likelihood analysis and Bayesian inference strongly supported the ideas that both new species are placed in Asilidae and that the Asilidae family is monophyletic. However, relationships among the three superfamilies remain unclear. Our results suggest that (1) although Asiloidea and Nemestrinidea are closely related, the potential positioning of Nemestrinoidea as an independent superfamily is worth investigating; and (2) Empidoidea may form a sister group to Asiloidea + Nemestrinidae, though this hypothesis requires further corroboration given the basal position of Hemipenthes hebeiensis (Bombyliidae). Conclusions: These findings highlight the need for expanded taxon sampling, particularly of underrepresented families, to resolve deep-level relationships within Asilomorpha. Clarifying the phylogenetic relationships within Asilomorpha will facilitate future investigations into their evolutionary origins and the evolution of characteristic traits. Full article
Show Figures

Figure 1

19 pages, 6682 KiB  
Article
Unusual Genetic Diversity Within Thereuopoda clunifera (Wood, 1862) (Chilopoda: Scutigeromorpha) Revealed by Phylogeny and Divergence Times Using Mitochondrial Genomes
by Jie-Hong Ji, Hui-Yuan Wu, Yi-Xin Gao, Chen-Yang Shen, Zi-Wen Yang, Kenneth B. Storey, Dan-Na Yu and Jia-Yong Zhang
Insects 2025, 16(5), 486; https://doi.org/10.3390/insects16050486 - 2 May 2025
Viewed by 551
Abstract
As one of the four primary evolutionary groups within myriapods, centipedes (Chilopoda) comprise approximately 3150 valid species. Recent molecular studies have begun to elucidate the phylogeny and time to divergence in Chilopoda; yet, identifying scutigeromorphs at the species level remains a notoriously challenging [...] Read more.
As one of the four primary evolutionary groups within myriapods, centipedes (Chilopoda) comprise approximately 3150 valid species. Recent molecular studies have begun to elucidate the phylogeny and time to divergence in Chilopoda; yet, identifying scutigeromorphs at the species level remains a notoriously challenging task. In this study, we obtained seven new complete mitogenomes of Thereuopoda clunifera (Wood, 1862) to investigate the phylogeny and divergence times of Chilopoda. Both maximum likelihood (ML) and Bayesian inference (BI) analyses recovered the relationship of (Scutigeromorpha + (Scolopendromorpha + (Lithobiomorpha + Geophilomorpha))). For Scutigeromorpha, seven newly sequenced mitogenomes of T. clunifera were divided into four distinct clades. Divergence time estimates suggest that the basal split of Chilopoda occurred during the Middle Ordovician period, with the origins of Scolopendromorpha, Lithobiomorpha, and Geophilomorpha dating to the Devonian period. Factors such as warm climates, coevolution between predator and prey, and the rifting of the Hainan Island may have driven the diversification of Scutigeromorpha. Based on genetic distance, the delimitation of molecular species, phylogenetic relationships, and divergence time analyses, we identified three cryptic species that existed within T. clunifera. This exceptionally high degree of hidden diversity can be ascribed to the morphological stasis that has occurred since the Paleozoic era and taxonomic impediment. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

16 pages, 2377 KiB  
Article
Complete Mitochondrial Genome of Chlorogomphus papilio (Odonata: Anisoptera: Chlorogomphidae) and Phylogenetic Analyses
by Xiaoxiao Jin, Xiaojia Lin, Simeng Wang and Jie Fang
Biology 2025, 14(5), 493; https://doi.org/10.3390/biology14050493 - 1 May 2025
Viewed by 455
Abstract
This study aimed to elucidate the mitochondrial genome organization of Chlorogomphus papilio and the phylogenetic relationships of Chlorogomphidae. We used the Illumina MiSeq sequencing platform to sequence the mitochondrial genome of C. papilio, which was subsequently assembled, annotated, and analyzed. Bayesian inference, [...] Read more.
This study aimed to elucidate the mitochondrial genome organization of Chlorogomphus papilio and the phylogenetic relationships of Chlorogomphidae. We used the Illumina MiSeq sequencing platform to sequence the mitochondrial genome of C. papilio, which was subsequently assembled, annotated, and analyzed. Bayesian inference, maximum likelihood, and maximum parsimony methods were employed to construct the mitochondrial phylogenetic tree of 25 species of Chlorogomphidae based on 16S rRNA and cox1 genes. We observed that the mitochondrial genome of C. papilio is 15,251 bp in length and includes 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and a non-coding control region. All PCGs start with a typical ATN codon. While cox1, cox2, cox3, and nad5 end with an incomplete termination codon (T), the remaining PCGs terminate with TAG. The secondary structure of the 22 tRNAs showed that only the trnS1 gene lacked the dihydrouracil arm (DHU arm), whereas the rest formed a typical cloverleaf structure. Additionally, 32 G-U mismatches were observed in the secondary structure. Phylogenetic analyses indicated that C. papilio and C. magnificus are sister species. Divergence time analyses indicated that Chlorogomphidae originated around 111.04 Ma, with C. papilio diverging from the common ancestor shared with C. magnificus approximately 58.51 Ma. This divergence is likely linked to the Paleocene–Eocene Thermal Maximum (PETM) and the tectonic uplift of the Himalayas, which created warm, humid habitats and contributed to geographic isolation. This study contributes to a better understanding of the mitochondrial genome and phylogeny of C. papilio, providing valuable molecular markers for further genetic studies. Full article
Show Figures

Figure 1

18 pages, 4864 KiB  
Article
The Complete Mitochondrial Genome of Red Costate Tiger Moth (Aloa lactinea [Cramer, 1777]), and Phylogenetic Analyses of the Subfamily Arctiinae
by Chengrong Pan, Sheng Xu, Yu Shu and Jie Fang
Genes 2025, 16(5), 554; https://doi.org/10.3390/genes16050554 - 30 Apr 2025
Viewed by 415
Abstract
Background/Objectives: Aloa lactinea, class Insecta, order Lepidoptera, superfamily Noctuoidea, family Erebidae, and subfamily Arctiinae, is a polytrophic agricultural pest. However, there are still many sequences missing for Arctiinae from mitochondrial whole-genome sequences. Methods: In this study, we determined and analyzed the complete [...] Read more.
Background/Objectives: Aloa lactinea, class Insecta, order Lepidoptera, superfamily Noctuoidea, family Erebidae, and subfamily Arctiinae, is a polytrophic agricultural pest. However, there are still many sequences missing for Arctiinae from mitochondrial whole-genome sequences. Methods: In this study, we determined and analyzed the complete mitochondrial genome sequence of A. lactinea. Furthermore, based on the sequencing results, we used the Bayesian inference, maximum likelihood, and maximum reduction methods to analyze the phylogenies of 18 species of the Hypophora subfamily. Results: The mitochondrial genome was found to be a circular double-stranded DNA with a length of 15,380 bp and included 13 protein-coding genes (PCGS), 22 tRNA genes, 2 rRNA genes, and one control region. With the exception of tRNASer(AGC), all the tRNA genes could form conventional clover structures. There were 23 intergenic spacer regions with lengths of 1–52 bp and six gene overlaps with lengths of 1–8 bp. The control region was located between rrnS and tRNAMet genes and comprised 303 bp and an AT content of 74.25%. Conclusions: The results showed that A. lactinea is closely related to Hyphantria cunea. Our results suggest that Syntomini is phylogenetically distinct from Arctiini and may warrant separate tribal status within Arctiinae. This study is dedicated to researching the mitochondrial genome and phylogenetic relationships of A. lactinea, providing a molecular basis for its classification. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3908 KiB  
Article
Phylogenetic Analyses of Bostrichiformia and Characterization of the Mitogenome of Gibbium aequinoctiale (Bostrichiformia Ptinidae)
by Hongli Zhang, Zhiping Han, Rui Zhang, Yongfang Zhang, Juan Wu and Zhichao Wang
Genes 2025, 16(5), 509; https://doi.org/10.3390/genes16050509 - 28 Apr 2025
Viewed by 380
Abstract
Background: Ptinidae, within the infraorder Bostrichiformia, are a cosmopolitan, ecologically diverse but poorly known group. The phylogeny within Bostrichiformia and the monophyly of Ptinidae and its phylogenetic placement in Bostrichiformia remain contentious. Methods: In this research, we determined the entire mitochondrial genome (mitogenome) [...] Read more.
Background: Ptinidae, within the infraorder Bostrichiformia, are a cosmopolitan, ecologically diverse but poorly known group. The phylogeny within Bostrichiformia and the monophyly of Ptinidae and its phylogenetic placement in Bostrichiformia remain contentious. Methods: In this research, we determined the entire mitochondrial genome (mitogenome) of Gibbium aequinoctiale, the first representative mitogenome of the subfamily Ptininae, and reconstructed the phylogenetic relationships for Bostrichiformia based on four mitochondrial datasets using maximum likelihood (ML) and Bayesian inference (BI) methods. Results: The mitogenome of G. aequinoctiale is a circular molecule spanning 17,020 bp and harbors 37 mitochondrial genes and a presumed control region (CR). The mitogenome exhibited a marked preference for the utilization of A and T bases, which was also observed in three kinds of genes and CR. AAT was inferred as the putative candidate initiation codon for cytochrome oxidase subunits 1 (COI). The control region contains three tandem repeats (TDRs) and one poly-thymine stretch (Poly-T) in both coding strands. The phylogenetic results appeared to support the monophyly of four families, Nosodendridae, Derodontidae, Dermestidae, and Bostrichidae, and the basal position of the latter two families within Bostrichiformia. However, the family Ptinidae was not verified as monophyly because of one species diverging from the main lineage. Three families, Dermestidae, Bostrichidae, and Ptinidae, clustered as the major clade in Bostrichiformia, among which Bostrichidae and Ptinidae grouped together as sister groups. Conclusions: The present study provides valuable mitochondrial information for Ptinidae and provides novel perspectives on the inner phylogeny within the infraorder Bostrichiformia. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3068 KiB  
Article
Mitochondrial Genomes of Six Snakes (Lycodon) and Implications for Their Phylogeny
by Fei Zhu, Anqiong Lu and Ke Sun
Genes 2025, 16(5), 493; https://doi.org/10.3390/genes16050493 - 26 Apr 2025
Viewed by 516
Abstract
Background: Colubridae, known to be one of the most species-rich snake families, remains relatively understudied in termshe context of complete mitochondrial genome research. This study provide the first systematic characterization of the mitochondrial genomes of six colubrid species: Lycodon subcinctus, Lycodon rosozonatus [...] Read more.
Background: Colubridae, known to be one of the most species-rich snake families, remains relatively understudied in termshe context of complete mitochondrial genome research. This study provide the first systematic characterization of the mitochondrial genomes of six colubrid species: Lycodon subcinctus, Lycodon rosozonatus, Lycodon fasciatus, Lycodon gongshan, Lycodon futsingensis, and Lycodon aulicus. Method: In this study, mitochondrial genomes were sequenced using Sanger sequencing. The raw data were subjected to quality- filtered withing using Fastp and subsequently assembled into complete mitochondrial genomes via SPAdes. Gene annotation was performed by Tblastn, Genewise (for CDS coding sequences), MiTFi (for transfer RNAs), and Rfam (for ribosomal RNAs). Sequence analyses were conducted with various tools, including MEGA, tRNAscan-SE, DnaSP, MISA, and REPuter. Finally, phylogenetic trees were reconstructed based on 13 protein-coding genes from 14 species. Results:The mitogenomes of these six species ranged from 17,143 to 17,298 bp in length and con-sisted of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and 2 control regions. The nucleotide composition of the Colu-bridae mitogenomes was comparable with an A + T composition ranging from 52.1% to 58.8% except for the trnS1 and trnC. All the tRNAs could fold into a stable secondary structure. The Pi and Ka/Ks values suggested that atp8 was the fastest-evolving gene, while cox1 was the most conserved gene. Bayesian inference and maximum likelihood phylogenetic analyses yielded consistent results, with the six sequenced species clus-tering together with their congeneric species. These findings will provide valuable references for further research on the phylogeny of Colubridae. Full article
Show Figures

Figure 1

14 pages, 3000 KiB  
Article
Denser Mitogenomic Sampling for Exploring the Phylogeny of Tellinoidea (Mollusca: Bivalvia)
by Weikang Tang, Tao Xu, Jihang Gong and Lingfeng Kong
Diversity 2025, 17(5), 303; https://doi.org/10.3390/d17050303 - 22 Apr 2025
Viewed by 404
Abstract
The superfamily Tellinoidea is one of the most diverse groups of marine bivalves, with significant ecological and economic value. To date, the availability of complete mitochondrial genome data within Tellinoidea remains limited, and the taxonomic coverage is still insufficient to resolve its internal [...] Read more.
The superfamily Tellinoidea is one of the most diverse groups of marine bivalves, with significant ecological and economic value. To date, the availability of complete mitochondrial genome data within Tellinoidea remains limited, and the taxonomic coverage is still insufficient to resolve its internal controversies. The current study aims to further explore the phylogenetic relationships within Tellinoidea through denser sampling. We have newly sequenced the mitochondrial genomes of 13 species, among which seven genera are being published for the first time. Combined with the published mitogenomes and transcriptomic data, we constructed the most comprehensive Tellinoidea phylogeny to date through maximum likelihood and Bayesian Inference analyses. Our findings support the monophyly of the superfamily Tellinoidea, with Semelidae nesting as a monophyletic group within Tellinidae. We also support the paraphyly of Tellinidae based on the mitochondrial genome data for the first time, identifying that the two subfamilies (Macominae and Tellininae) are polyphyletic. Gene rearrangement analysis reveals a relatively high degree of variation in Semelidae. By expanding the mitochondrial genome dataset, this study provides new insights into the phylogeny of Tellinoidea and underscores the need for further sampling of species to reassess the phylogenetic relationships of Tellinidae and the entire Tellinoidea. Full article
Show Figures

Figure 1

13 pages, 6996 KiB  
Article
Decoding the Mitochondrial Genome of the Tiger Shrimp: Comparative Genomics and Phylogenetic Placement Within Caridean Shrimps
by Zhengfei Wang, Weijie Jiang, Jingxue Ye, Huiwen Wu, Yan Wang and Fei Xiong
Genes 2025, 16(4), 457; https://doi.org/10.3390/genes16040457 - 16 Apr 2025
Cited by 1 | Viewed by 587
Abstract
Background/Objectives: Freshwater shrimps of the family Atyidae, particularly the hyperdiverse genus Caridina, are keystone decomposers in tropical aquatic ecosystems and valuable aquaculture resources. However, their evolutionary relationships remain unresolved due to conflicting morphological and molecular evidence. Here, we sequenced and characterized the complete [...] Read more.
Background/Objectives: Freshwater shrimps of the family Atyidae, particularly the hyperdiverse genus Caridina, are keystone decomposers in tropical aquatic ecosystems and valuable aquaculture resources. However, their evolutionary relationships remain unresolved due to conflicting morphological and molecular evidence. Here, we sequenced and characterized the complete mitochondrial genome of Caridina mariae (Tiger Shrimp), aiming to (1) elucidate its genomic architecture, and (2) reconstruct a robust phylogeny of Caridea using 155 decapod species to address long-standing taxonomic uncertainties. Methods: Muscle tissue from wild-caught C. mariae (voucher ID: KIZ-2023-001, Guangdong, China) was subjected to Illumina NovaSeq 6000 sequencing (150 bp paired-end). The mitogenome was assembled using MITObim v1.9, annotated via MITOS2, and validated by PCR. Phylogenetic analyses employed 13 protein-coding genes under Bayesian inference (MrBayes v3.2.7; 106 generations, ESS > 200) and maximum likelihood (RAxML v8.2.12; 1000 bootstraps), with Harpiosquilla harpax as the outgroup. The best-fit substitution model (MtZoa + F + I + G4) was selected via jModelTest v2.1.10. Results: The 15,581 bp circular mitogenome encodes 37 genes (13 PCGs, 22 tRNAs, and 2 rRNAs) and an A + T-rich control region (86.7%). Notably, trnS1 lacks the dihydrouracil arm—a rare structural deviation in Decapoda. The 13 PCGs exhibit moderate nucleotide skew (AT = 0.030; GC = −0.214), while nad5, nad4, and nad6 show significant GC-skew. Phylogenomic analyses strongly support (PP = 1.0; BS = 95) a novel sister-group relationship between Halocaridinidae and Typhlatyinae, contradicting prior morphology-based classifications. The monophyly of Penaeoidea, Astacidea, and Caridea was confirmed, but Eryonoidea and Crangonoidea formed an unexpected clade. Conclusions: This study provides the first mitogenomic framework for C. mariae, revealing both conserved features (e.g., PCG content) and lineage-specific innovations (e.g., tRNA truncation). The resolved phylogeny challenges traditional Caridea classifications and highlights convergent adaptation in freshwater lineages. These findings offer molecular tools for the conservation prioritization of threatened Caridina species and underscore the utility of mitogenomics in decapod systematics. Full article
Show Figures

Figure 1

41 pages, 17061 KiB  
Article
Multiple Ecological Niche Modeling Reveals Niche Conservatism and Divergence in East Asian Yew (Taxus)
by Chuncheng Wang, Minqiu Wang, Shanshan Zhu, Xingtong Wu, Shaolong Yang, Yadan Yan and Yafeng Wen
Plants 2025, 14(7), 1094; https://doi.org/10.3390/plants14071094 - 1 Apr 2025
Cited by 1 | Viewed by 563
Abstract
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche [...] Read more.
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche evolution and the roles of ecological and geographical factors in lineage diversification, remain unclear. Using occurrence records, environmental data, and reconstructed phylogenies, we employed ensemble ecological niche models (eENMs), environmental principle components analysis (PCA-env), and phyloclimatic modeling to analyze niche similarity and evolution among 11 Taxus lineages. Based on reconstructed Bayesian trees and geographical distribution characteristics, we classified the eleven lineages into four clades: Northern (T. cuspidata), Central (T. chinensis, T. qinlingensis, and the Emei type), Western (T. wallichiana, T. florinii, and T. contorta), and Southern (T. calcicola, T. phytonii, T. mairei, and the Huangshan type). Orogenic activities and climate changes in the Tibetan Plateau since the Late Miocene likely facilitated the local adaptation of ancestral populations in Central China, the Hengduan Mountains, and the Yunnan–Guizhou Plateau, driving their expansion and diversification towards the west and south. Key environmental variables, including extreme temperature, temperature and precipitation variability, light, and altitude, were identified as major drivers of current niche divergence. Both niche conservatism and divergence were observed, with early conservatism followed by recent divergence. The Southern clade exhibits high heat and moisture tolerance, suggesting an adaptive shift, while the Central and Western clades retain ancestral drought and cold tolerance, displaying significant phylogenetic niche conservatism (PNC). We recommend prioritizing the conservation of T. qinlingensis, which exhibits the highest PNC level, particularly in the Qinling, Daba, and Taihang Mountains, which are highly degraded and vulnerable to future climate fluctuations. Full article
Show Figures

Figure 1

15 pages, 8072 KiB  
Article
Yeyi: A Phylogenetic Loner in Eastern Bantu
by Hilde Gunnink, Natalia Chousou-Polydouri and Koen Bostoen
Languages 2025, 10(4), 55; https://doi.org/10.3390/languages10040055 - 21 Mar 2025
Viewed by 555
Abstract
While major advances in the subclassification of Bantu languages have been made thanks to comprehensive, lexicon-based classifications, there are still several important uncertainties obscuring not only the diachronic linguistic processes that gave rise to Bantu diversification, but also the population dynamics of ancestral [...] Read more.
While major advances in the subclassification of Bantu languages have been made thanks to comprehensive, lexicon-based classifications, there are still several important uncertainties obscuring not only the diachronic linguistic processes that gave rise to Bantu diversification, but also the population dynamics of ancestral Bantu speakers underlying them. In this paper, we address one of these persisting mysteries of Bantu genealogy, i.e., the unclassified Yeyi (R41) language of southern Africa. While the Bantu origin of Yeyi is straightforward and undisputed, its closest relatives are unknown, as is the major Bantu branch to which it belongs. We use a lexicon-based, Bayesian phylogenetic approach, comparing Yeyi to languages of the wider geographic region, including even more far-flung languages that have previously been hypothesized to bear a close relationship to Yeyi. The resultant linguistic phylogeny shows that Yeyi is part of the Wider Eastern Bantu branch as its own clade with Narrow Eastern Bantu languages as its closest relatives and none of its nearest neighbors. We argue that this relatively isolated position of Yeyi within Eastern Bantu suggests an early migration into southern Africa from the putative Wider Eastern Bantu homeland, which was followed by the loss of Yeyi’s putative earlier sister languages, presumably through a shift to Bantu languages spoken by more recent migrants. Full article
(This article belongs to the Special Issue Recent Developments on the Diachrony and Typology of Bantu Languages)
Show Figures

Figure 1

11 pages, 1330 KiB  
Article
Phylogeny and Specific Determination of Gloydius halys-intermedius Complex Based on Complete Mitochondrial Genes
by Lijie Jin, Zuyao Xia, Ning Liu, Shengyue Hou, Chuandong Lv, Lianyou Tang, Shuguang Feng, Jingsong Shi and Ming Bai
Genes 2025, 16(3), 276; https://doi.org/10.3390/genes16030276 - 25 Feb 2025
Viewed by 593
Abstract
Background: The phylogenetic resolution within the Gloydius halys-intermedius Complex remains debatable due to the following reasons: loci selection in previous studies varied between authors; limited dataset (1−5 mitochondrial or nuclear gene fragments); lack of sampling density; and nodal supports at specific nodes [...] Read more.
Background: The phylogenetic resolution within the Gloydius halys-intermedius Complex remains debatable due to the following reasons: loci selection in previous studies varied between authors; limited dataset (1−5 mitochondrial or nuclear gene fragments); lack of sampling density; and nodal supports at specific nodes remain weak, specifically within Gloydius cognatus, G. halys, and G. stejnegeri. Objectives: To revise the taxonomic and phylogenetic relationships within the G. halys-intermedius Complex, we reconstructed the molecular phylogeny and performed species delimitation based on the complete mitochondrial genomes. Methods: In this study, twelve nomenclatural groups of Gloydius species were involved in the computation of Bayesian phylogenomic inference, five of the twelve nomenclature groups were newly sequenced, while the rest were acquired from the National Center for Biotechnology Information (NCBI). The Bayesian phylogenomic inference was constructed based on 13 mitochondrial protein-coding genes. Species delimitation was performed by two distance-based methods (ABGD and ASAP) and two tree-based methods (GMYC and bPTP). Results: This research resolved the systematic relationship within the G. intermedius Complex with the support of mitogenome-based phylogenomics, while indicating cryptic diversity within the Gloydius halys-intermedius Complex: G. intermedius samples from South Korea show as paraphyletic to the cluster of the samples from northeastern China. Species delimitation results based on four models resemble each other, supporting Gloydius caucasicus, G. cognatus, G. halys, and G. stejnegeri, each representing full species. The species delimitation results of this research also resemble the nomenclatural species based on previous morphometrical results. This research indicates that species delimitation efforts based on the phylogenomic approach would likely resolve complex evolutionary relationships. Full article
Show Figures

Figure 1

Back to TopTop