Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = Bacterial flagellum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2288 KiB  
Article
Cryo-EM Structure of the Flagellar Motor Complex from Paenibacillus sp. TCA20
by Sakura Onoe, Tatsuro Nishikino, Miki Kinoshita, Norihiro Takekawa, Tohru Minamino, Katsumi Imada, Keiichi Namba, Jun-ichi Kishikawa and Takayuki Kato
Biomolecules 2025, 15(3), 435; https://doi.org/10.3390/biom15030435 - 18 Mar 2025
Viewed by 956
Abstract
The bacterial flagellum, a complex nanomachine composed of numerous proteins, is utilized by bacteria for swimming in various environments and plays a crucial role in their survival and infection. The flagellar motor is composed of a rotor and stator complexes, with each stator [...] Read more.
The bacterial flagellum, a complex nanomachine composed of numerous proteins, is utilized by bacteria for swimming in various environments and plays a crucial role in their survival and infection. The flagellar motor is composed of a rotor and stator complexes, with each stator unit functioning as an ion channel that converts flow from outside of cell membrane into rotational motion. Paenibacillus sp. TCA20 was discovered in a hot spring, and a structural analysis was conducted on the stator complex using cryo-electron microscopy to elucidate its function. Two of the three structures (Classes 1 and 3) were found to have structural properties typical for other stator complexes. In contrast, in Class 2 structures, the pentamer ring of the A subunits forms a C-shape, with lauryl maltose neopentyl glycol (LMNG) bound to the periplasmic side of the interface between the A and B subunits. This interface is conserved in all stator complexes, suggesting that hydrophobic ligands and lipids can bind to this interface, a feature that could potentially be utilized in the development of novel antibiotics aimed at regulating cell motility and infection. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

17 pages, 3256 KiB  
Review
Chemotaxis and Related Signaling Systems in Vibrio cholerae
by Fuga Omori, Hirotaka Tajima, Sotaro Asaoka, So-ichiro Nishiyama, Yoshiyuki Sowa and Ikuro Kawagishi
Biomolecules 2025, 15(3), 434; https://doi.org/10.3390/biom15030434 - 18 Mar 2025
Viewed by 1251
Abstract
The motility and chemotaxis of Vibrio cholerae, the bacterial pathogen responsible for cholera, play crucial roles in both environmental survival and infection. Understanding their molecular mechanisms is therefore essential not only for fundamental biology but also for infection control and therapeutic development. [...] Read more.
The motility and chemotaxis of Vibrio cholerae, the bacterial pathogen responsible for cholera, play crucial roles in both environmental survival and infection. Understanding their molecular mechanisms is therefore essential not only for fundamental biology but also for infection control and therapeutic development. The bacterium’s sheathed, polar flagellum—its motility organelle—is powered by a sodium-driven motor. This motor’s rotation is regulated by the chemotaxis (Che) signaling system, with a histidine kinase, CheA, and a response regulator, CheY, serving as the central processing unit. However, V. cholerae possesses two additional, parallel Che signaling systems whose physiological functions remain unclear. Furthermore, the bacterium harbors over 40 receptors/transducers that interact with CheA homologs, forming a complex regulatory network likely adapted to diverse environmental cues. Despite significant progress, many aspects of these systems remain to be elucidated. Here, we summarize the current understanding to facilitate future research. Full article
Show Figures

Figure 1

12 pages, 1998 KiB  
Review
Scrutinizing Stator Rotation in the Bacterial Flagellum: Reconciling Experiments and Switching Models
by Ayush Joshi and Pushkar P. Lele
Biomolecules 2025, 15(3), 355; https://doi.org/10.3390/biom15030355 - 1 Mar 2025
Viewed by 1121
Abstract
The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the [...] Read more.
The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the flagellar motor have transformed our understanding of the motor, revealing a novel gear mechanism where a membranous pentamer of MotA proteins rotates around a cell wall-anchored dimer of MotB proteins to turn the contacting flagellar rotor. A derivative model suggests that significant changes in rotor diameter occur during switching, enabling each MotA5MotB2 stator unit to shift between internal and external gear configurations, causing clockwise (CW) and counterclockwise (CCW) motor rotation, respectively. However, recent structural work favors a mechanism where the stator units dynamically swing back and forth between the two gear configurations without significant changes in rotor diameter. Given the intricate link between the switching model and the gear mechanism for flagellar rotation, a critical evaluation of the underlying assumptions is crucial for refining switching models. This review scrutinizes key assumptions within prevailing models of flagellar rotation and switching, identifies knowledge gaps, and proposes avenues for future biophysical tests. Full article
Show Figures

Figure 1

17 pages, 3426 KiB  
Review
Decoding Bacterial Motility: From Swimming States to Patterns and Chemotactic Strategies
by Xiang-Yu Zhuang and Chien-Jung Lo
Biomolecules 2025, 15(2), 170; https://doi.org/10.3390/biom15020170 - 23 Jan 2025
Viewed by 1830
Abstract
The bacterial flagellum serves as a crucial propulsion apparatus for motility and chemotaxis. Bacteria employ complex swimming patterns to perform essential biological tasks. These patterns involve transitions between distinct swimming states, driven by flagellar motor rotation, filament polymorphism, and variations in flagellar arrangement [...] Read more.
The bacterial flagellum serves as a crucial propulsion apparatus for motility and chemotaxis. Bacteria employ complex swimming patterns to perform essential biological tasks. These patterns involve transitions between distinct swimming states, driven by flagellar motor rotation, filament polymorphism, and variations in flagellar arrangement and configuration. Over the past two decades, advancements in fluorescence staining technology applied to bacterial flagella have led to the discovery of diverse bacterial movement states and intricate swimming patterns. This review provides a comprehensive overview of nano-filament observation methodologies, swimming states, swimming patterns, and the physical mechanisms underlying chemotaxis. These novel insights and ongoing research have the potential to inspire the design of innovative active devices tailored for operation in low-Reynolds-number environments. Full article
Show Figures

Figure 1

14 pages, 2882 KiB  
Article
Proteomic Analysis of the Fish Pathogen Vibrio ordalii Strain Vo-LM-18 and Its Outer Membrane Vesicles
by Macarena Echeverría-Bugueño, Mauricio Hernández and Ruben Avendaño-Herrera
Animals 2024, 14(24), 3598; https://doi.org/10.3390/ani14243598 - 13 Dec 2024
Viewed by 1032
Abstract
Vibrio ordalii is the causative agent of atypical vibriosis in salmonids cultured in Chile. While extensive research provides insights into V. ordalii through phenotypic, antigenic, and genetic typing, as well as various virulence mechanisms, proteomic characterization remains largely unexplored. This study aimed to [...] Read more.
Vibrio ordalii is the causative agent of atypical vibriosis in salmonids cultured in Chile. While extensive research provides insights into V. ordalii through phenotypic, antigenic, and genetic typing, as well as various virulence mechanisms, proteomic characterization remains largely unexplored. This study aimed to advance the proteomic knowledge of Chilean V. ordalii Vo-LM-18 and its OMVs, which have known virulence. Using Nano-UHPLC-LC-MS/MS, we identified 2242 proteins and 1755 proteins in its OMVs. Of these, 644 unique proteins were detected in V. ordalii Vo-LM-18, namely 156 unique proteins in its OMVs and 1596 shared proteins. The major categories for the OMVs were like those in the bacteria (i.e., cytoplasmic and cytoplasmic membrane proteins). Functional annotation identified 37 biological pathways in V. ordalii Vo-LM-18 and 28 in its OMVs. Proteins associated with transport, transcription, and virulence were predominant in both. Evident differences in protein expression were found. OMVs expressed a higher number of virulence-associated proteins, including those related to iron- and heme-uptake mechanisms. Notable pathways in the bacteria included flagellum assembly, heme group-associated proteins, and protein biosynthesis. This proteomic analysis is the first to detect the RTX toxin in a V. ordalii strain (Vo-LM-18) and its vesicles. Our results highlight the crucial role of OMVs in the pathogenesis and adaptation of V. ordalii, suggesting use as potential diagnostic biomarkers and therapeutic targets for bacterial infections. Full article
Show Figures

Figure 1

20 pages, 3445 KiB  
Review
Structure and Dynamics of the Bacterial Flagellar Motor Complex
by Shuichi Nakamura and Tohru Minamino
Biomolecules 2024, 14(12), 1488; https://doi.org/10.3390/biom14121488 - 22 Nov 2024
Cited by 6 | Viewed by 3183
Abstract
Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities [...] Read more.
Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities of the flagella among motile bacteria, the flagellum commonly consists of a membrane-embedded rotary motor fueled by an ion motive force across the cytoplasmic membrane, a universal joint, and a helical propeller that extends several micrometers beyond the cell surface. The flagellar motor consists of a rotor and several stator units, each of which acts as a transmembrane ion channel complex that converts the ion flux through the channel into the mechanical work required for force generation. The rotor ring complex is equipped with a reversible gear that is regulated by chemotactic signal transduction pathways. As a result, bacteria can move to more desirable locations in response to environmental changes. Recent high-resolution structural analyses of flagella using cryo-electron microscopy have provided deep insights into the assembly, rotation, and directional switching mechanisms of the flagellar motor complex. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

12 pages, 1382 KiB  
Article
Salinarimonas chemoclinalis, an Aerobic Anoxygenic Phototroph Isolated from a Saline, Sulfate-Rich Meromictic Lake
by Katia Messner, John A. Kyndt and Vladimir Yurkov
Microorganisms 2024, 12(11), 2359; https://doi.org/10.3390/microorganisms12112359 - 19 Nov 2024
Cited by 2 | Viewed by 895
Abstract
A pink-pigmented, ovoid-rod-shaped, Gram-negative bacterial strain ML10T was previously isolated in a study of a meromictic lake in British Columbia, Canada. It produces bacteriochlorophyll a, which is incorporated into the reaction center and light harvesting I complexes. This alongside no anaerobic [...] Read more.
A pink-pigmented, ovoid-rod-shaped, Gram-negative bacterial strain ML10T was previously isolated in a study of a meromictic lake in British Columbia, Canada. It produces bacteriochlorophyll a, which is incorporated into the reaction center and light harvesting I complexes. This alongside no anaerobic or photoautotrophic growth supports the designation of the strain as an aerobic anoxygenic phototroph. The cells produce wavy polar flagellum and accumulate clear, refractive granules, presumed to be polyhydroxyalkanoate. Sequence of the 16S rRNA gene identified close relatedness to Salinarimonas rosea (97.85%), Salinarimonas ramus (97.92%) and Saliniramus fredricksonii (94.61%). The DNA G + C content was 72.06 mol %. Differences in cellular fatty acids and some physiological tests compared to Salinarimonadaceae members, as well as average nucleotide identity and digital DNA-DNA hybridization, define the strain as a new species in Salinarimonas. Therefore, we propose that ML10T (=NCIMB 15586T = DSM 118510T) be classified as the type strain of a new species in the genus with the name Salinarimonas chemoclinalis sp. nov. Full article
Show Figures

Figure 1

18 pages, 1981 KiB  
Review
Unravelling the Roles of Bacterial Nanomachines Bistability in Pathogens’ Life Cycle
by Romain Gory, Nicolas Personnic and Didier Blaha
Microorganisms 2024, 12(9), 1930; https://doi.org/10.3390/microorganisms12091930 - 23 Sep 2024
Cited by 1 | Viewed by 1715
Abstract
Bacterial nanomachines represent remarkable feats of evolutionary engineering, showcasing intricate molecular mechanisms that enable bacteria to perform a diverse array of functions essential to persist, thrive, and evolve within ecological and pathological niches. Injectosomes and bacterial flagella represent two categories of bacterial nanomachines [...] Read more.
Bacterial nanomachines represent remarkable feats of evolutionary engineering, showcasing intricate molecular mechanisms that enable bacteria to perform a diverse array of functions essential to persist, thrive, and evolve within ecological and pathological niches. Injectosomes and bacterial flagella represent two categories of bacterial nanomachines that have been particularly well studied both at the molecular and functional levels. Among the diverse functionalities of these nanomachines, bistability emerges as a fascinating phenomenon, underscoring their dynamic and complex regulation as well as their contribution to shaping the bacterial community behavior during the infection process. In this review, we examine two closely related bacterial nanomachines, the type 3 secretion system, and the flagellum, to explore how the bistability of molecular-scale devices shapes the bacterial eco-pathological life cycle. Full article
(This article belongs to the Special Issue Insight into Bacterial Pathogens: Pathogenesis and Host Response)
Show Figures

Figure 1

15 pages, 10505 KiB  
Article
The cAMP Receptor Protein (CRP) of Vibrio mimicus Regulates Its Bacterial Growth, Type II Secretion System, Flagellum Formation, Adhesion Genes, and Virulence
by Ziqi Tian, Fei Xiang, Kun Peng, Zhenyang Qin, Yang Feng, Bowen Huang, Ping Ouyang, Xiaoli Huang, Defang Chen, Weimin Lai and Yi Geng
Animals 2024, 14(3), 437; https://doi.org/10.3390/ani14030437 - 29 Jan 2024
Cited by 4 | Viewed by 2216
Abstract
Vibrio mimicus is a serious pathogen in aquatic animals, resulting in significant economic losses. The cAMP receptor protein (CRP) often acts as a central regulator in highly pathogenic pathogens. V. mimicus SCCF01 is a highly pathogenic strain isolated from yellow catfish; the crp [...] Read more.
Vibrio mimicus is a serious pathogen in aquatic animals, resulting in significant economic losses. The cAMP receptor protein (CRP) often acts as a central regulator in highly pathogenic pathogens. V. mimicus SCCF01 is a highly pathogenic strain isolated from yellow catfish; the crp gene deletion strain (Δcrp) was constructed by natural transformation to determine whether this deletion affects the virulence phenotypes. Their potential molecular connections were revealed by qRT-PCR analysis. Our results showed that the absence of the crp gene resulted in bacterial and colony morphological changes alongside decreases in bacterial growth, hemolytic activity, biofilm formation, enzymatic activity, motility, and cell adhesion. A cell cytotoxicity assay and animal experiments confirmed that crp contributes to V. mimicus pathogenicity, as the LD50 of the Δcrp strain was 73.1-fold lower compared to the WT strain. Moreover, qRT-PCR analysis revealed the inhibition of type II secretion system genes, flagellum genes, adhesion genes, and metalloproteinase genes in the deletion strain. This resulted in the virulence phenotype differences described above. Together, these data demonstrate that the crp gene plays a core regulatory role in V. mimicus virulence and pathogenicity. Full article
(This article belongs to the Special Issue Bacterial and Viral Diseases in Aquatic Animals)
Show Figures

Figure 1

12 pages, 5641 KiB  
Article
The Role of Flagellum and Flagellum-Based Motility on Salmonella Enteritidis and Escherichia coli Biofilm Formation
by Diana Vilas Boas, Joana Castro, Daniela Araújo, Franklin L. Nóbrega, Charles W. Keevil, Nuno F. Azevedo, Maria João Vieira and Carina Almeida
Microorganisms 2024, 12(2), 232; https://doi.org/10.3390/microorganisms12020232 - 23 Jan 2024
Cited by 12 | Viewed by 5031
Abstract
Flagellum-mediated motility has been suggested to contribute to virulence by allowing bacteria to colonize and spread to new surfaces. In Salmonella enterica and Escherichia coli species, mutants affected by their flagellar motility have shown a reduced ability to form biofilms. While it is [...] Read more.
Flagellum-mediated motility has been suggested to contribute to virulence by allowing bacteria to colonize and spread to new surfaces. In Salmonella enterica and Escherichia coli species, mutants affected by their flagellar motility have shown a reduced ability to form biofilms. While it is known that some species might act as co-aggregation factors for bacterial adhesion, studies of food-related biofilms have been limited to single-species biofilms and short biofilm formation periods. To assess the contribution of flagella and flagellum-based motility to adhesion and biofilm formation, two Salmonella and E. coli mutants with different flagellar phenotypes were produced: the fliC mutants, which do not produce flagella, and the motAB mutants, which are non-motile. The ability of wild-type and mutant strains to form biofilms was compared, and their relative fitness was determined in two-species biofilms with other foodborne pathogens. Our results showed a defective and significant behavior of E. coli in initial surface colonization (p < 0.05), which delayed single-species biofilm formation. Salmonella mutants were not affected by the ability to form biofilm (p > 0.05). Regarding the effect of motility/flagellum absence on bacterial fitness, none of the mutant strains seems to have their relative fitness affected in the presence of a competing species. Although the absence of motility may eventually delay initial colonization, this study suggests that motility is not essential for biofilm formation and does not have a strong impact on bacteria’s fitness when a competing species is present. Full article
(This article belongs to the Special Issue Bacterial Biofilm Microenvironments: Their Interactions and Functions)
Show Figures

Figure 1

18 pages, 7544 KiB  
Article
Biofilm Formation in Campylobacter concisus: The Role of the luxS Gene
by Mohsina Huq, Syeda Umme Habiba Wahid and Taghrid Istivan
Microorganisms 2024, 12(1), 46; https://doi.org/10.3390/microorganisms12010046 - 27 Dec 2023
Cited by 2 | Viewed by 1984
Abstract
Campylobacter concisus is a bacterium that inhabits human oral cavities and is an emerging intestinal tract pathogen known to be a biofilm producer and one of the bacterial species found in dental plaque. In this study, biofilms of oral and intestinal C. concisus [...] Read more.
Campylobacter concisus is a bacterium that inhabits human oral cavities and is an emerging intestinal tract pathogen known to be a biofilm producer and one of the bacterial species found in dental plaque. In this study, biofilms of oral and intestinal C. concisus isolates were phenotypically characterized. The role of the luxS gene, which is linked to the regulation of biofilm formation in other pathogens, was assessed in relation to the pathogenic potential of this bacterium. Biofilm formation capacity was assessed using phenotypic assays. Oral strains were shown to be the highest producers. A luxS mutant was created by inserting a kanamycin cassette within the luxS gene of the highest biofilm-forming isolate. The loss of the polar flagellum was observed with scanning and transmission electron microscopy (SEM and TEM). Furthermore, the luxS mutant exhibited a significant reduction (p < 0.05) in biofilm formation, motility, and its expression of flaB, in addition to the capability to invade intestinal epithelial cells, compared to the parental strain. The study concluded that C. concisus oral isolates are significantly higher biofilm producers than the intestinal isolates and that LuxS plays a role in biofilm formation, invasion, and motility in this bacterium. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

14 pages, 2963 KiB  
Article
Roles of Hcp2, a Hallmark of T6SS2 in Motility, Adhesive Capacity, and Pathogenicity of Vibrio alginolyticus
by Shuilong Wu, Jufen Tang, Bei Wang, Jia Cai and Jichang Jian
Microorganisms 2023, 11(12), 2893; https://doi.org/10.3390/microorganisms11122893 - 30 Nov 2023
Cited by 4 | Viewed by 1829
Abstract
The type VI secretion system (T6SS) is a large secretory device, widely found in Gram-negative bacteria, which plays important roles in virulence, bacterial competition, and environmental adaptation. Vibrio alginolyticus (V. alginolyticus) is an opportunistic pathogen that causes vibriosis in aquaculture animals. [...] Read more.
The type VI secretion system (T6SS) is a large secretory device, widely found in Gram-negative bacteria, which plays important roles in virulence, bacterial competition, and environmental adaptation. Vibrio alginolyticus (V. alginolyticus) is an opportunistic pathogen that causes vibriosis in aquaculture animals. V. alginolyticus possesses two type VI secretion systems (named the T6SS1 and T6SS2), but their functions remain largely unclear. In this paper, the roles of the core component of the T6SS2 cluster of V. alginolyticus HY9901, hemolysin-coregulated protein2 coding gene hcp2, are reported. Deletion of hcp2 clearly impaired the swarming motility, adhesive capacity, and pathogenicity of V. alginolyticus against zebrafish. Furthermore, transmission electron microscopy (TEM) found that the abnormal morphology of flagellum filament in the hcp2 mutant strain could be partially restored by hcp2 complementarity. By proteomic and RT-qPCR analysis, we confirmed that the expression levels of flagellar flagellin and assembly-associated proteins were remarkably decreased in an hcp2 mutant strain, compared with the wild-type strain, and could be partially restored with a supply of hcp2. Accordingly, hcp2 had a positive influence on the transcription of flagellar regulons rpoN, rpoS, and fliA; this was verified by RT-qPCR. Taken together, these results suggested that hcp2 was involved in mediating the motility, adhesion, and pathogenicity of Vibrio alginolyticus through positively impacting its flagellar system. Full article
(This article belongs to the Special Issue Vibrio Virulence)
Show Figures

Figure 1

17 pages, 15072 KiB  
Article
Lactiplantibacillus plantarum Postbiotics Suppress Salmonella Infection via Modulating Bacterial Pathogenicity, Autophagy and Inflammasome in Mice
by Aixin Hu, Wenxia Huang, Xin Shu, Shiyue Ma, Caimei Yang, Ruiqiang Zhang, Xiao Xiao and Yanping Wu
Animals 2023, 13(20), 3215; https://doi.org/10.3390/ani13203215 - 14 Oct 2023
Cited by 13 | Viewed by 3195
Abstract
Our study aimed to explore the effects of postbiotics on protecting against Salmonella infection in mice and clarify the underlying mechanisms. Eighty 5-week-old C57BL/6 mice were gavaged daily with Lactiplantibacillus plantarum (LP)-derived postbiotics (heat-killed bacteria, LPBinactive; culture supernatant, LPC) or the [...] Read more.
Our study aimed to explore the effects of postbiotics on protecting against Salmonella infection in mice and clarify the underlying mechanisms. Eighty 5-week-old C57BL/6 mice were gavaged daily with Lactiplantibacillus plantarum (LP)-derived postbiotics (heat-killed bacteria, LPBinactive; culture supernatant, LPC) or the active bacteria (LPBactive), and gavaged with Salmonella enterica Typhimurium (ST). The Turbidimetry test and agar diffusion assay indicated that LPC directly inhibited Salmonella growth. Real-time PCR and biofilm inhibition assay showed that LPC had a strong ability in suppressing Salmonella pathogenicity by reducing virulence genes (SopE, SopB, InvA, InvF, SipB, HilA, SipA and SopD2), pili genes (FilF, SefA, LpfA, FimF), flagellum genes (FlhD, FliC, FliD) and biofilm formation. LP postbiotics were more effective than LP on attenuating ST-induced intestinal damage in mice, as indicated by increasing villus/crypt ratio and increasing the expression levels of tight junction proteins (Occludin and Claudin-1). Elisa assay showed that LP postbiotics significantly reduced ST-induced inflammation by regulating the levels of inflammatory cytokines (the increased IL-4 and IL-10 and the decreased TNF-α) in serum and ileum (p < 0.05). Furthermore, LP postbiotics inhibited the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome by decreasing the protein expression of NLRP3 and Caspase-1, and the gene expression of Caspase-1, IL-1β and IL-18. Meanwhile, both LPC and LPB observably activated autophagy under ST infection, as indicated by the up-regulated expression of LC3 and Beclin1 and the downregulated p62 level (p < 0.05). Finally, we found that LP postbiotics could trigger an AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy. In summary, Lactiplantibacillus plantarum-derived postbiotics alleviated Salmonella infection via modulating bacterial pathogenicity, autophagy and NLRP3 inflammasome in mice. Our results confirmed the effectiveness of postbiotics agents in the control of Salmonella infection. Full article
Show Figures

Figure 1

42 pages, 540 KiB  
Article
On the Relationship between Design and Evolution
by Stephen Dilley, Casey Luskin, Brian Miller and Emily Reeves
Religions 2023, 14(7), 850; https://doi.org/10.3390/rel14070850 - 28 Jun 2023
Cited by 4 | Viewed by 5918
Abstract
A longstanding question in science and religion is whether standard evolutionary models are compatible with the claim that the world was designed. In The Compatibility of Evolution and Design, theologian E. V. Rope Kojonen constructs a powerful argument that not only are [...] Read more.
A longstanding question in science and religion is whether standard evolutionary models are compatible with the claim that the world was designed. In The Compatibility of Evolution and Design, theologian E. V. Rope Kojonen constructs a powerful argument that not only are evolution and design compatible, but that evolutionary processes (and biological data) strongly point to design. Yet Kojonen’s model faces several difficulties, each of which raise hurdles for his understanding of how evolution and design can be harmonized. First, his argument for design (and its compatibility with evolution) relies upon a particular view of nature in which fitness landscapes are “fine-tuned” to allow proteins to evolve from one form to another by mutation and selection. But biological data run contrary to this claim, which poses a problem for Kojonen’s design argument (and, as such, his attempt to harmonize design with evolution). Second, Kojonen appeals to the bacterial flagellum to strengthen his case for design, yet the type of design in the flagellum is incompatible with mainstream evolutionary theory, which (again) damages his reconciliation of design with evolution. Third, Kojonen regards convergent evolution as notable positive evidence in favor of his model (including his version of design), yet convergent evolution actually harms the justification of common ancestry, which Kojonen also accepts. This, too, mars his reconciliation of design and evolution. Finally, Kojonen’s model damages the epistemology that undergirds his own design argument as well as the design intuitions of everyday “theists on the street”, whom he seeks to defend. Thus, despite the remarkable depth, nuance, and erudition of Kojonen’s account, it does not offer a convincing reconciliation of ‘design’ and ‘evolution’. Full article
(This article belongs to the Special Issue Exploring Science from a Biblical Perspective)
16 pages, 4214 KiB  
Article
The FilZ Protein Contains a Single PilZ Domain and Facilitates the Swarming Motility of Pseudoalteromonas sp. SM9913
by Qi Sheng, Ang Liu, Peiling Yang, Zhuowei Chen, Peng Wang, Haining Sun, Chunyang Li, Andrew McMinn, Yin Chen, Yuzhong Zhang, Hainan Su, Xiulan Chen and Yuqiang Zhang
Microorganisms 2023, 11(6), 1566; https://doi.org/10.3390/microorganisms11061566 - 13 Jun 2023
Cited by 3 | Viewed by 2087
Abstract
Swarming regulation is complicated in flagellated bacteria, especially those possessing dual flagellar systems. It remains unclear whether and how the movement of the constitutive polar flagellum is regulated during swarming motility of these bacteria. Here, we report the downregulation of polar flagellar motility [...] Read more.
Swarming regulation is complicated in flagellated bacteria, especially those possessing dual flagellar systems. It remains unclear whether and how the movement of the constitutive polar flagellum is regulated during swarming motility of these bacteria. Here, we report the downregulation of polar flagellar motility by the c-di-GMP effector FilZ in the marine sedimentary bacterium Pseudoalteromonas sp. SM9913. Strain SM9913 possesses two flagellar systems, and filZ is located in the lateral flagellar gene cluster. The function of FilZ is negatively controlled by intracellular c-di-GMP. Swarming in strain SM9913 consists of three periods. Deletion and overexpression of filZ revealed that, during the period when strain SM9913 expands quickly, FilZ facilitates swarming. In vitro pull-down and bacterial two-hybrid assays suggested that, in the absence of c-di-GMP, FilZ interacts with the CheW homolog A2230, which may be involved in the chemotactic signal transduction pathway to the polar flagellar motor protein FliMp, to interfere with polar flagellar motility. When bound to c-di-GMP, FilZ loses its ability to interact with A2230. Bioinformatic investigation indicated that filZ-like genes are present in many bacteria with dual flagellar systems. Our findings demonstrate a novel mode of regulation of bacterial swarming motility. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop