Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = BaCo0.4Fe0.4Zr0.1Y0.1O3-δ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5749 KB  
Article
Reactive Magnetron Sputtering for Y-Doped Barium Zirconate Electrolyte Deposition in a Complete Protonic Ceramic Fuel Cell
by Victoire Lescure, Mélanie François, Maëlys Charleux, Eric Aubry, Lionel Combemale, Pascal Briois and Gilles Caboche
Crystals 2024, 14(5), 475; https://doi.org/10.3390/cryst14050475 - 18 May 2024
Cited by 3 | Viewed by 1844
Abstract
Yttrium-doped barium zirconate is a commonly used electrolyte material for Protonic Ceramic Fuel Cells (PCFC) due to its high protonic conductivity and high chemical stability. However, it is also known for its poor sinterability and poor grain boundary conductivity. In this work, in [...] Read more.
Yttrium-doped barium zirconate is a commonly used electrolyte material for Protonic Ceramic Fuel Cells (PCFC) due to its high protonic conductivity and high chemical stability. However, it is also known for its poor sinterability and poor grain boundary conductivity. In this work, in response to these issues, reactive magnetron sputtering was strategically chosen as the electrolyte deposition technique. This method allows the creation of a 4 µm tick electrolyte with a dense columnar microstructure. Notably, this technique is not widely utilized in PCFC fabrication. In this study, a complete cell is elaborated without exceeding a sintering temperature of 1350 °C. Tape casting is used for the anode, and spray coating is used for the cathode. The material of interest is yttrium-doped barium zirconate with the formula BaZr0.8Y0.2O3−δ (BZY). The anode consists of a NiO-BZY cermet, while the cathode is composed of BZY and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSFC) in a 50:50 weight ratio. The electrochemical impedance spectroscopy analysis reveals a global polarization resistance of 0.3 Ω cm2, indicating highly efficient interfaces between electrolytes and electrodes. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

25 pages, 6134 KB  
Article
Geochemical and Isotopic Fractionation in the Hypogene Ore, Gossan, and Saprolite of the Alvo 118 Deposit: Implications for Copper Exploration in the Regolith of the Carajás Mineral Province
by Pabllo Henrique Costa dos Santos, Marcondes Lima da Costa and Desiree Lisette Roerdink
Minerals 2023, 13(11), 1441; https://doi.org/10.3390/min13111441 - 15 Nov 2023
Cited by 3 | Viewed by 2308
Abstract
In the Carajás Mineral Province, gossan formation and lateritization have produced numerous supergene orebodies at the expense of IOCG deposits and host rocks. The Alvo 118 deposit comprises massive and disseminated hypogene copper sulfides associated with gossan and mineralized saprolites. The hypogene reserves [...] Read more.
In the Carajás Mineral Province, gossan formation and lateritization have produced numerous supergene orebodies at the expense of IOCG deposits and host rocks. The Alvo 118 deposit comprises massive and disseminated hypogene copper sulfides associated with gossan and mineralized saprolites. The hypogene reserves are 170 Mt, with 1% Cu and 0.3 ppm Au, while the supergenes are 55 Mt, comprised of 30% gossan and 70% saprolite, with 0.92% Cu and 0.03 ppm Au. The gossan includes goethite, malachite, cuprite, and libethenite zones. The saprolite comprises kaolinite, vermiculite, smectite, and relics of chlorite. In the hypogene mineralization, Ag, Te, Pb, Se, Bi, Au, In, Y, Sn, and U are mainly hosted by chalcopyrite and petzite, altaite, galena, uraninite, stannite, and cassiterite. In the gossan, Ag, Te, Pb, Se, and Bi are hosted by Cu minerals, while Au, In, Y, Sn, and U are associated with iron oxyhydroxides, in addition to Zn, As, Be, Ga, Ga, Mo, Ni, and Sc. As supporting information, δ65Cu values indicate that the gossan is immature and, at least partly, not affected by leaching. In the saprolite, Ga, Sc, Sn, V, Mn, Co, and Cr are associated with the iron oxyhydroxides, partially derived from the host rock weathering. The δ56Fe values indicate that hypogene low contribution of the hypogene mineralization to the saprolite iron content. The association of Al2O3, Hf, Zr, Th, TiO2, Ce, La, Ba, and Sr represents the geochemical signature of the host rocks, with dominant contributions from chlorites, while In, Y, Te, Pb, Bi, and Se are the main pathfinders of Cu mineralization. Full article
(This article belongs to the Special Issue Mineral Evolution and Mineralization during Weathering)
Show Figures

Figure 1

13 pages, 4287 KB  
Article
Chemical Compatibility and Electrochemical Performance of Ba7Ta3.7Mo1.3O20.15 Electrolytes for Solid Oxide Fuel Cells
by Dong Xu, Xingkai Zhou, Yu Li, Xiaole Yu, Zhexiang Yu, Bochang Shi, Yaowei Mi, Bangze Wu and Lin Ge
Materials 2023, 16(11), 3919; https://doi.org/10.3390/ma16113919 - 23 May 2023
Cited by 3 | Viewed by 2192
Abstract
Hexagonal perovskite-related oxides Ba7Ta3.7Mo1.3O20.15 (BTM) have recently been reported as promising electrolyte materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this work, sintering properties, thermal expansion coefficient, and chemical stability of BTM were studied. In [...] Read more.
Hexagonal perovskite-related oxides Ba7Ta3.7Mo1.3O20.15 (BTM) have recently been reported as promising electrolyte materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this work, sintering properties, thermal expansion coefficient, and chemical stability of BTM were studied. In particular, the chemical compatibilities of (La0.75Sr0.25)0.95MnOδ (LSM), La0.6Sr0.4CoO3 (LSC), La0.6Sr0.4Co0.2Fe0.8O3+δ (LSCF), PrBaMn2O5+δ (PBM), Sr2Fe1.5Mo0.5O6-δ (SFM), BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY), and NiO electrode materials with the BTM electrolyte were evaluated. The results show that BTM is highly reactive with these electrodes, in particular, BTM tends to react with Ni, Co, Fe, Mn, Pr, Sr, and La elements in the electrodes to form resistive phases, thus deteriorating the electrochemical properties, which has not been reported before. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

15 pages, 5987 KB  
Article
Fluorine Anion-Doped Ba0.6Sr0.4Co0.7Fe0.2Nb0.1O3-δ as a Promising Cathode for Protonic Ceramic Fuel Cells
by Yang Liu, Shanshan Jiang, Hao Qiu, Wei Wang, Elaine Miller and Chao Su
Catalysts 2023, 13(5), 793; https://doi.org/10.3390/catal13050793 - 23 Apr 2023
Cited by 12 | Viewed by 2547
Abstract
The widespread application of protonic ceramic fuel cells is limited by the lack of oxygen electrodes with excellent activity and stability. Herein, the strategy of halogen doping in a Ba0.6Sr0.4Co0.7Fe0.2Nb0.1O3-δ (BSCFN) cathode [...] Read more.
The widespread application of protonic ceramic fuel cells is limited by the lack of oxygen electrodes with excellent activity and stability. Herein, the strategy of halogen doping in a Ba0.6Sr0.4Co0.7Fe0.2Nb0.1O3-δ (BSCFN) cathode is discussed in detail for improving cathode activity. Ba0.6Sr0.4Co0.7Fe0.2Nb0.1O3-x-δFx (x = 0, 0.05, 0.1) cathode materials are synthesised by a solid-phase method. The XRD results show that fluorine anion-doped BSCFN forms a single-phase perovskite structure. XPS and titration results reveal that fluorine ion doping increases active oxygen and surface adsorbed oxygen. It also confines chemical bonds between cations and anions, which enhances the cathode’s catalytic performance. Therefore, an anode-supported single cell with the configuration of Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb)|BZCYYb|Ba0.6Sr0.4Co0.7Fe0.2Nb0.1O3-0.1-δF0.1 (BSCFN-F0.1) achieved a high peak power density of 630 mW cm−2 at 600 °C. Moreover, according to the symmetrical cell test, the BSCFN-F0.1 electrode demonstrated a superb stability for nearly 400 h at 600 °C. This work focuses on the influence of fluorine anion incorporation upon the performance of cathode materials. It also analyses and discusses the effects of different fluorine ion incorporation amounts to occupy different oxygen positions. Full article
(This article belongs to the Special Issue Advanced Electrocatalysts for Fuel Cells and Metal–Air Batteries)
Show Figures

Graphical abstract

12 pages, 2872 KB  
Article
Surface and Bulk Oxygen Kinetics of BaCo0.4Fe0.4Zr0.2−XYXO3−δ Triple Conducting Electrode Materials
by Jack H. Duffy, Yuqing Meng, Harry W. Abernathy and Kyle S. Brinkman
Membranes 2021, 11(10), 766; https://doi.org/10.3390/membranes11100766 - 5 Oct 2021
Cited by 18 | Viewed by 3418
Abstract
Triple ionic-electronic conductors have received much attention as electrode materials. In this work, the bulk characteristics of oxygen diffusion and surface exchange were determined for the triple-conducting BaCo0.4Fe0.4Zr0.2−XYXO3−δ suite of samples. Y substitution increased [...] Read more.
Triple ionic-electronic conductors have received much attention as electrode materials. In this work, the bulk characteristics of oxygen diffusion and surface exchange were determined for the triple-conducting BaCo0.4Fe0.4Zr0.2−XYXO3−δ suite of samples. Y substitution increased the overall size of the lattice due to dopant ionic radius and the concomitant formation of oxygen vacancies. Oxygen permeation measurements exhibited a three-fold decrease in oxygen permeation flux with increasing Y substitution. The DC total conductivity exhibited a similar decrease with increasing Y substitution. These relatively small changes are coupled with an order of magnitude increase in surface exchange rates from Zr-doped to Y-doped samples as observed by conductivity relaxation experiments. The results indicate that Y-doping inhibits bulk O2− conduction while improving the oxygen reduction surface reaction, suggesting better electrode performance for proton-conducting systems with greater Y substitution. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Graphical abstract

12 pages, 2704 KB  
Article
Nanostructured BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Cathodes with Different Microstructural Architectures
by Lucía dos Santos-Gómez, Javier Zamudio-García, José M. Porras-Vázquez, Enrique R. Losilla and David Marrero-López
Nanomaterials 2020, 10(6), 1055; https://doi.org/10.3390/nano10061055 - 30 May 2020
Cited by 17 | Viewed by 4006
Abstract
Lowering the operating temperature of solid oxide fuel cells (SOFCs) is crucial to make this technology commercially viable. In this context, the electrode efficiency at low temperatures could be greatly enhanced by microstructural design at the nanoscale. This work describes alternative microstructural approaches [...] Read more.
Lowering the operating temperature of solid oxide fuel cells (SOFCs) is crucial to make this technology commercially viable. In this context, the electrode efficiency at low temperatures could be greatly enhanced by microstructural design at the nanoscale. This work describes alternative microstructural approaches to improve the electrochemical efficiency of the BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) cathode. Different electrodes architectures are prepared in a single step by a cost-effective and scalable spray-pyrolysis deposition method. The microstructure and electrochemical efficiency are compared with those fabricated from ceramic powders and screen-printing technique. A complete structural, morphological and electrochemical characterization of the electrodes is carried out. Reduced values of area specific resistance are achieved for the nanostructured cathodes, i.e., 0.067 Ω·cm2 at 600 °C, compared to 0.520 Ω·cm2 for the same cathode obtained by screen-printing. An anode supported cell with nanostructured BCFZY cathode generates a peak power density of 1 W·cm−2 at 600 °C. Full article
Show Figures

Graphical abstract

14 pages, 3857 KB  
Article
High-Performance La0.5Ba0.5Co1/3Mn1/3Fe1/3O3−δ-BaZr1−zYzO3−δ Cathode Composites via an Exsolution Mechanism for Protonic Ceramic Fuel Cells
by Laura Rioja-Monllor, Sandrine Ricote, Carlos Bernuy-Lopez, Tor Grande, Ryan O’Hayre and Mari-Ann Einarsrud
Inorganics 2018, 6(3), 83; https://doi.org/10.3390/inorganics6030083 - 23 Aug 2018
Cited by 17 | Viewed by 5412
Abstract
A novel exsolution process was used to fabricate complex all-oxide nanocomposite cathodes for Protonic Ceramic Fuel Cells (PCFCs). The nanocomposite cathodes with La0.5Ba0.5Co1/3Mn1/3Fe1/3O3−δ-BaZr1−zYzO3−δ nominal composition [...] Read more.
A novel exsolution process was used to fabricate complex all-oxide nanocomposite cathodes for Protonic Ceramic Fuel Cells (PCFCs). The nanocomposite cathodes with La0.5Ba0.5Co1/3Mn1/3Fe1/3O3−δ-BaZr1−zYzO3−δ nominal composition were prepared from a single-phase precursor via an oxidation-driven exsolution mechanism. The exsolution process results in a highly nanostructured and intimately interconnected percolating network of the two final phases, one proton conducting (BaZr1−zYzO3−δ) and one mixed oxygen ion and electron conducting (La0.5Ba0.5Co1/3Mn1/3Fe1/3O3−δ), yielding excellent cathode performance. The cathode powder is synthesized as a single-phase cubic precursor by a modified Pechini route followed by annealing at 700 °C in N2. The precursor phase is exsolved into two cubic perovskite phases by further heat treatment in air. The phase composition and chemical composition of the two phases were confirmed by Rietveld refinement. The electrical conductivity of the composites was measured and the electrochemical performance was determined by impedance spectroscopy of symmetrical cells using BaZr0.9Y0.1O2.95 as electrolyte. Our results establish the potential of this exsolution method where a large number of different cations can be used to design composite cathodes. The La0.5Ba0.5Co1/3Mn1/3Fe1/3O3−δ-BaZr0.9Y0.1O2.95 composite cathode shows the best performance of 0.44 Ω·cm2 at 600 °C in 3% moist synthetic air. Full article
(This article belongs to the Special Issue Mixed Metal Oxides)
Show Figures

Figure 1

Back to TopTop