Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = B and N dual-doped graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6655 KiB  
Article
Density Functional Theory Investigation of Temperature-Dependent Properties of Cu-Nitrogen-Doped Graphene as a Cathode Material in Fuel Cell Applications
by Yashas Balasooriya, Pubudu Samarasekara, Chee Ming Lim, Yuan-Fong Chou Chau, Muhammad Raziq Rahimi Kooh and Roshan Thotagamuge
Molecules 2023, 28(23), 7873; https://doi.org/10.3390/molecules28237873 - 30 Nov 2023
Cited by 9 | Viewed by 2060
Abstract
In this study, density functional theory (DFT) was used to investigate the influence of temperature on the performance of a novel Cu-nitrogen-doped graphene Cu2-N8/Gr nanocomposite as a catalyst for the oxygen reduction reaction (ORR) in fuel cell applications. Our [...] Read more.
In this study, density functional theory (DFT) was used to investigate the influence of temperature on the performance of a novel Cu-nitrogen-doped graphene Cu2-N8/Gr nanocomposite as a catalyst for the oxygen reduction reaction (ORR) in fuel cell applications. Our DFT calculations, conducted using Gaussian 09w with the 3–21G/B3LYP basis set, focus on the Cu-nitrogen-doped graphene nanocomposite cathode catalyst, exploring its behavior at three distinct temperatures: 298.15 K, 353.15 K, and 393.15 K, under acidic conditions. Our analysis of formation energies indicates that the structural stability of the catalyst remains unaffected as the temperature varies within the potential range of 0–7.21 V. Notably, the stability of the ORR steps experiences a marginal decrease with increasing temperature, with the exception of the intermediate OH + H2O (*OH + H + *OH). Interestingly, the optimization reveals the absence of single OH and H2O intermediates during the reactions. Furthermore, the OH + H2O step is optimized to form the OH + H + OH intermediate, featuring the sharing of a hydrogen atom between dual OH intermediates. Free energy calculations elucidate that the catalyst supports spontaneous ORR at all temperatures. The highest recorded maximum cell potential, 0.69 V, is observed at 393.15 K, while the lowest, 0.61 V, is recorded at 353.15 K. In particular, the Cu2-N8/Gr catalyst structure demonstrates a reduced favorability for the H2O2 generation at all temperatures, resulting in the formation of dual OH intermediates rather than H2O2. In conclusion, at 393.15 K, Cu2-N8/Gr exhibits enhanced catalyst performance compared to 353.15 K and 298.15 K, making it a promising candidate for ORR catalysis in fuel cell applications. Full article
(This article belongs to the Special Issue Multiconfigurational and DFT Methods Applied to Chemical Systems)
Show Figures

Graphical abstract

12 pages, 3293 KiB  
Article
Ultralight MOF-Derived Ni3S2@N, S-Codoped Graphene Aerogels for High-Performance Microwave Absorption
by Wenjing Yu, Bo Liu and Xiaojiao Zhao
Nanomaterials 2022, 12(4), 655; https://doi.org/10.3390/nano12040655 - 16 Feb 2022
Cited by 23 | Viewed by 2765
Abstract
To develop high-performance microwave absorption materials with the features of lightweight, thin thickness, broad bandwidth, and strong absorption, an ultralight Ni3S2@N, S-codoped graphene aerogel with a density of 13.5 mg/cm3 has been fabricated by the use of metal-organic [...] Read more.
To develop high-performance microwave absorption materials with the features of lightweight, thin thickness, broad bandwidth, and strong absorption, an ultralight Ni3S2@N, S-codoped graphene aerogel with a density of 13.5 mg/cm3 has been fabricated by the use of metal-organic frameworks (MOFs) to directly initiate the gelation of graphene oxide strategy. In such a strategy, dual-functional 1D Ni-MOF nanorods not only act as the gelation agent but also afford the doping elements (N and S) originated from the organic species and the precursor for metal sulfide. Due to the synergistic effects of good impedance matching and multiple losses, the optimal reflection loss (RL) of as-prepared Ni3S2@N, S-codoped graphene aerogel reaches −46.9 dB at 17.1 GHz with only 2.0 mm and ultralow filling content (1.75 wt%). The maximum effective absorption bandwidth (EAB) reaches 6.3 GHz (11.7–18.0 GHz) at 2.38 mm, covering the whole Ku band. Moreover, the value of EAB with the RL less than −30 dB can be tuned to 12.2 GHz (5.8–18 GHz) at the absorber thickness ranging from 1.9 to 5.0 mm. This work provides insight for rational design and fabrication of multicomponent-containing graphene aerogels, showing the potential application in lightweight and high-performance microwave absorption. Full article
Show Figures

Figure 1

16 pages, 4709 KiB  
Article
Biomass Related Highly Porous Metal Free Carbon for Gas Storage and Electrocatalytic Applications
by Samantha K. Samaniego Andrade, István Bakos, Gábor Dobos, Attila Farkas, Gábor Kiss, Szilvia Klébert, János Madarász and Krisztina László
Materials 2021, 14(13), 3488; https://doi.org/10.3390/ma14133488 - 23 Jun 2021
Cited by 4 | Viewed by 2706
Abstract
In this paper we report the synthesis of a N, S co-doped metal free carbon cryogel obtained from a marine biomass derived precursor using urea as nitrogen source. Natural carrageenan intrinsically contains S and inorganic salt. The latter also serves as an activating [...] Read more.
In this paper we report the synthesis of a N, S co-doped metal free carbon cryogel obtained from a marine biomass derived precursor using urea as nitrogen source. Natural carrageenan intrinsically contains S and inorganic salt. The latter also serves as an activating agent during the pyrolytic step. The overall 11.6 atomic % surface heteroatom concentration comprises 5% O, 4.6% N and 1% S. The purified and annealed final carbon (CA) has a hierarchical pore structure of micro-, meso- and macropores with an apparent surface area of 1070 m2/g. No further treatment was applied. The gas adsorption potential of the samples was probed with H2, CO2 and CH4, while the electrocatalytic properties were tested in an oxygen reduction reaction. The atmospheric CO2 and CH4 storage capacity at 0 °C in the low pressure range is very similar to that of HKUST-1, with the CO2/CH4 selectivity below 20 bar, even exceeding that of the MOF, indicating the potential of CA in biogas separation. The electrocatalytic behavior was assessed in an aqueous KOH medium. The observed specific gravimetric capacitance 377 F/g was exceeded only in B, N dual doped and/or graphene doped carbons from among metal free electrode materials. The CA electrode displays almost the same performance as a commercial 20 wt% Pt/C electrode. The oxygen reduction reaction (ORR) exhibits the 4-electron mechanism. The 500-cycle preliminary stability test showed only a slight increase of the surface charge. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

12 pages, 1973 KiB  
Article
High Active PdSn Binary Alloyed Catalysts Supported on B and N Codoped Graphene for Formic Acid Electro-Oxidation
by Dan Chen, Shien Pei, Zhishun He, Haibo Shao, Jianming Wang, Kai Wang, Yong Wang and Yanxian Jin
Catalysts 2020, 10(7), 751; https://doi.org/10.3390/catal10070751 - 7 Jul 2020
Cited by 22 | Viewed by 3068
Abstract
A series of PdSn binary catalysts with varied molar ratios of Pd to Sn are synthesized on B and N dual-doped graphene supporting materials. The catalysts are characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Formic acid electro-oxidation reaction is performed [...] Read more.
A series of PdSn binary catalysts with varied molar ratios of Pd to Sn are synthesized on B and N dual-doped graphene supporting materials. The catalysts are characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Formic acid electro-oxidation reaction is performed on these catalysts, and the results reveal that the optimal proportion of Pd:Sn is 3:1. X-ray photoelectron spectroscopy (XPS) measurements show that when compared with 3Pd1Sn/graphene, B and N co-doping into the graphene sheet can tune the electronic structure of graphene, favoring the formation of small-sized metallic nanoparticles with good dispersion. On the other hand, when compared with the monometallic counterparts, the incorporation of Sn can generate oxygenated species that help to remove the intermediates, exposing more active Pd sites. Moreover, the electrochemical tests illustrate that 3Pd1Sn/BN-G catalyst with a moderate amount of Sn exhibits the best catalytic activity and stability on formic acid electro-oxidation, owing to the synergistic effect of the Sn doping and the B, N co-doping graphene substrate. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

Back to TopTop