Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Arroyo Colorado

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2748 KB  
Article
Effects of Green Infrastructure Practices on Runoff and Water Quality in the Arroyo Colorado Watershed, Texas
by Pamela Mugisha and Tushar Sinha
Water 2025, 17(11), 1565; https://doi.org/10.3390/w17111565 - 22 May 2025
Cited by 1 | Viewed by 1266
Abstract
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus [...] Read more.
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus and nitrogen and to mitigate issues of low dissolved oxygen, in some of its river segments. Consequently, the river’s potential to support aquatic life has been significantly reduced, thus highlighting the need for restoration. To achieve this restoration, a watershed protection plan was developed, comprising several preventive mitigation measures, including installing green infrastructure (GI) practices. However, for effective reduction of excessive nutrient loadings, there is a need to study the effects of different combinations of GI practices under current and future land use scenarios to guide decisions in implementing the cost-effective infrastructure while considering factors such as the existing drainage system, topography, land use, and streamflow. Therefore, this study coupled the Soil and Water Assessment Tool (SWAT) model with the System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN) model to determine the effects of different combinations of GI practices on the reduction of nitrogen and phosphorus under changing land use conditions in three selected Arroyo Colorado subwatersheds. Two land use maps from the U.S. Geological Survey (USGS) Forecasting Scenarios of land use (FORE-SCE) model for 2050, namely, A1B and B1, were implemented in the coupled SWAT-SUSTAIN model in this study, where the urban area is projected to increase by 6% and 4%, respectively, with respect to the 2018 land use scenario. As expected, runoff, phosphorus, and nitrogen slightly increased with imperviousness. The modeling results showed that implementing either vegetated swales or wet ponds reduces flow and nutrients to meet the Total Maximum Daily Loads (TMDLs) targets, which cost about USD 1.5 million under current land use (2018). Under the 2050 future projected land use changes (A1B scenario), the cost-effective GI practice was implemented in vegetated swales at USD 1.5 million. In contrast, bioretention cells occupied the least land area to achieve the TMDL targets at USD 2 million. Under the B1 scenario of 2050 projected land use, porous pavements were most cost effective at USD 1.5 million to meet the TMDL requirements. This research emphasizes the need for collaboration between stakeholders at the watershed and farm levels to achieve TMDL targets. This study informs decision-makers, city planners, watershed managers, and other stakeholders involved in restoration efforts in the Arroyo Colorado basin. Full article
(This article belongs to the Special Issue Urban Stormwater Control, Utilization, and Treatment)
Show Figures

Figure 1

27 pages, 7528 KB  
Article
Defining Regional and Local Sediment Sources in the Ancestral Colorado River System: A Heavy Mineral Study of a Mixed Provenance Unit in the Fish Creek-Vallecito Basin, Southern California
by Paula McGill, Uisdean Nicholson, Dirk Frei and David Macdonald
Geosciences 2023, 13(2), 45; https://doi.org/10.3390/geosciences13020045 - 31 Jan 2023
Viewed by 4787
Abstract
The Colorado River has flowed across the dextral strike-slip plate boundary between the North American and Pacific plates since the latest Miocene or earliest Pliocene. The Fish Creek-Vallecito Basin (FCVB) lies on the Pacific Plate in southern California, dextrally offset from the point [...] Read more.
The Colorado River has flowed across the dextral strike-slip plate boundary between the North American and Pacific plates since the latest Miocene or earliest Pliocene. The Fish Creek-Vallecito Basin (FCVB) lies on the Pacific Plate in southern California, dextrally offset from the point where the modern Colorado river enters the Salton Trough; it contains a record of ancestral Colorado River sedimentation from 5.3–2.5 Ma. The basin stratigraphy exhibits a changing balance between locally derived (L-Suite) and Colorado River (C-Suite) sediments. This paper focuses on the Palm Springs Group (PSG), a thick fluvial and alluvial sequence deposited on the upper delta plain (between 4.2–2.5 Ma) when the Colorado was active in the area, allowing the detailed examination of the processes of sediment mixing from two distinct provenance areas. The PSG consists of three coeval formations: 1) Canebrake Conglomerate, a basin margin that has coarse alluvial fan deposits derived from surrounding igneous basement; 2) Olla Formation, fan-fringe sandstones containing L-Suite, C-Suite, and mixed units; and 3) Arroyo Diablo Formation, mineralogically mature C-Suite sandstones. Stratigraphic analysis demonstrates that the river flowed through a landscape with relief up to 2000 m. Satellite mapping and detailed logging reveal a variable balance between the two suites in the Olla Formation with an apparent upward increase in L-Suite units before abrupt cessation of Colorado sedimentation in the basin. Stable heavy mineral indices differentiate L-Suite (high rutile:zircon index: RZi 40–95) from C-Suite (RZi: 0–20). Both suites have garnet:zircon index (GZi) and apatite:tourmaline index (ATi) mostly above 50, although many L-suite and mixed Olla samples have much lower ATi (20–50), suggesting that the distal floodplain was wet and the local sediment had a longer residence time there, or went through several cycles of erosion and redeposition. Heavy mineral analysis, garnet geochemical analysis, and detrital zircon U-Pb age spectra allow us to quantify the amount of mixing from different sediment sources. These data show that about 30% of the mixed units are derived from the Colorado River and that up to 20% of the L-Suite is also derived from the Colorado River, suggesting that there was mutual cannibalisation of older deposits by fluvial channels in a transitional area at the basin margin. Although this study is local in scope, it provides an insight into the extent and nature of sediment mixing in a two-source system. We conclude that most ‘mixing’ is actually interbedding from separate sources; true mixing is facilitated by low subsidence rates and the rapid migration of fluvial channels. Full article
(This article belongs to the Collection Detrital Minerals: Their Application in Palaeo-Reconstruction)
Show Figures

Figure 1

19 pages, 2114 KB  
Article
Assessment of Optional Sediment Transport Functions via the Complex Watershed Simulation Model SWAT
by Haw Yen, Shenglan Lu, Qingyu Feng, Ruoyu Wang, Jungang Gao, Dawn Michelle Brady, Amirreza Sharifi, Jungkyu Ahn, Shien-Tsung Chen, Jaehak Jeong, Michael James White and Jeffrey George Arnold
Water 2017, 9(2), 76; https://doi.org/10.3390/w9020076 - 29 Jan 2017
Cited by 28 | Viewed by 7983
Abstract
The Soil and Water Assessment Tool 2012 (SWAT2012) offers four sediment routing methods as optional alternatives to the default simplified Bagnold method. Previous studies compared only one of these alternative sediment routing methods with the default method. The proposed study evaluated the impacts [...] Read more.
The Soil and Water Assessment Tool 2012 (SWAT2012) offers four sediment routing methods as optional alternatives to the default simplified Bagnold method. Previous studies compared only one of these alternative sediment routing methods with the default method. The proposed study evaluated the impacts of all four alternative sediment transport methods on sediment predictions: the modified Bagnold equation, the Kodoatie equation, the Molinas and Wu equation, and the Yang equation. The Arroyo Colorado Watershed, Texas, USA, was first calibrated for daily flow. The sediment parameters were then calibrated to monthly sediment loads, using each of the four sediment routing equations. An automatic calibration tool—Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT)—was used to fit model parameters. The four sediment routing equations yielded substantially different sediment sources and sinks. The Yang equation performed best, followed by Kodoatie, Bagnold, and Molinas and Wu equations, according to greater model goodness-of-fit (represented by higher Nash–Sutcliffe Efficiency coefficient and percent bias closer to 0) as well as lower model uncertainty (represented by inclusion of observed data within 95% confidence interval). Since the default method (Bagnold) does not guarantee the best results, modelers should carefully evaluate the selection of alternative methods before conducting relevant studies or engineering projects. Full article
Show Figures

Figure 1

Back to TopTop