Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Arctic Dipole (AD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10217 KiB  
Article
Changes in Beaufort High and Their Impact on Sea Ice Motion in the Western Arctic during the Winters of 2001–2020s
by Xiaomin Chang, Tongliang Yan, Guangyu Zuo, Qing Ji and Ming Xue
J. Mar. Sci. Eng. 2024, 12(1), 165; https://doi.org/10.3390/jmse12010165 - 15 Jan 2024
Cited by 1 | Viewed by 1695
Abstract
Sea ice affects the Earth’s energy balance and ocean circulation and is crucial to the global climate system. However, research on the decadal variations in the mean sea-level pressure patterns in recent winters (2001–2020) and the characteristics of sea ice motion (SIM) in [...] Read more.
Sea ice affects the Earth’s energy balance and ocean circulation and is crucial to the global climate system. However, research on the decadal variations in the mean sea-level pressure patterns in recent winters (2001–2020) and the characteristics of sea ice motion (SIM) in the Western Arctic region is very limited. In this study, we utilized the Empirical Orthogonal Function (EOF) analysis method to investigate the potential impacts of Arctic Oscillation (AO) and Arctic Dipole (AD) on the Beaufort High (BH) during the period 2001–2020 and discuss the changes in SIM intensity in the Western Arctic. The results indicate that the negative phases of AO and AD are connected with (tend to bring about) a higher BH, strengthening anticyclonic circulation in the Arctic region. Conversely, the positive phases of AO and AD led to the collapse of the BH, resulting in a reversal of sea ice movement. Additionally, during the period 2001–2020, the BH consistently explained 67% of the sea ice motion (had the highest explanatory degree for sea ice advection within the region (weighted average 61.71%)). Meanwhile, the sea ice advection has become more sensitive to change in various atmospheric circulations. This study contributes to an in-depth understanding of the response of sea ice motion to atmospheric circulation in the Western Arctic in recent years, offering more explanations for the anomalous movement of sea ice in the Western Arctic. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

14 pages, 5259 KiB  
Article
Impacts of a Recent Interdecadal Shift in the Summer Arctic Dipole on the Variability in Atmospheric Circulation over Eurasia
by Xuanwen Zhang, Xueqi Pang, Xiang Zhang and Bingyi Wu
Atmosphere 2024, 15(1), 71; https://doi.org/10.3390/atmos15010071 - 7 Jan 2024
Cited by 2 | Viewed by 1737
Abstract
This study investigated the relationship between the summer Arctic Dipole (AD) anomaly and the climatic variability in Eurasia during the period 1979–2021. It was found that the summer AD anomaly experienced a phase shift from frequent negative phases before 2006 to positive phases [...] Read more.
This study investigated the relationship between the summer Arctic Dipole (AD) anomaly and the climatic variability in Eurasia during the period 1979–2021. It was found that the summer AD anomaly experienced a phase shift from frequent negative phases before 2006 to positive phases after 2007, as manifested by the shift of the center of the positive (negative) AD anomaly to Greenland (in the Laptev Sea and East Siberian Seas) in the more recent period (2007–2021) from the vicinity of the Kara Sea and Laptev Sea (the Canadian archipelago) in the earlier period (1979–2006). Before the mid-2000s, a wave train was shown in the middle troposphere of Eurasia, and this teleconnection pattern of atmospheric circulation could have resulted in local warm and wet (cool and dry) anomalies over northern Russia and East Asia (Western Europe and the Far east). Since the mid-2000s, the wave train has experienced a notable adjustment that was conducive to East Asian and Arctic cooling, displaying anticyclonic anomalies around northern Eurasia and two cyclonic anomalies centered near the Arctic and East Asia. The presence of a cold Arctic anomaly was found to enhance westerly winds at high latitudes by modulating the meridional temperature gradient (MTG) and impeding the southward propagation of cold Arctic air. Additionally, the warmth of northern Eurasia may have also resulted in a reduction in the MTG between northern Eurasia and the mid-lower latitudes, favoring a weakening of zonal winds over the central region of Eurasia. The increased upper-level westerly winds over southern East Asia implied a weakened East Asian Summer Monsoon, which inhibited precipitation in northeast China. Full article
(This article belongs to the Special Issue Arctic Atmosphere–Sea Ice Interaction and Impacts)
Show Figures

Figure 1

14 pages, 7900 KiB  
Article
The Intraseasonal and Interannual Variability of Arctic Temperature and Specific Humidity Inversions
by Lejiang Yu, Qinghua Yang, Mingyu Zhou, Xubin Zeng, Donald H. Lenschow, Xianqiao Wang and Bo Han
Atmosphere 2019, 10(4), 214; https://doi.org/10.3390/atmos10040214 - 22 Apr 2019
Cited by 9 | Viewed by 4293
Abstract
Temperature and humidity inversions are common in the Arctic’s lower troposphere, and are a crucial component of the Arctic’s climate system. In this study, we quantify the intraseasonal oscillation of Arctic temperature and specific humidity inversions and investigate its interannual variability using data [...] Read more.
Temperature and humidity inversions are common in the Arctic’s lower troposphere, and are a crucial component of the Arctic’s climate system. In this study, we quantify the intraseasonal oscillation of Arctic temperature and specific humidity inversions and investigate its interannual variability using data from the Surface Heat Balance of the Arctic (SHEBA) experiment from October 1997 to September 1998 and the European Centre for Medium-Range Forecasts (ECMWF) Reanalysis (ERA)-interim for the 1979–2017 period. In January 1998, there were two noticeable elevated inversions and one surface inversion. The transitions between elevated and surface-based inversions were associated with the intraseasonal variability of the temperature and humidity differences between 850 and 950 hPa. The self-organizing map (SOM) technique is utilized to obtain the main modes of surface and elevated temperature and humidity inversions on intraseasonal time scales. Low (high) pressure and more (less) cloud cover are related to elevated (surface) temperature and humidity inversions. The frequency of strong (weak) elevated inversions over the eastern hemisphere has decreased (increased) in the past three decades. The wintertime Arctic Oscillation (AO) and Arctic Dipole (AD) during their positive phases have a significant effect on the occurrence of surface and elevated inversions for two Nodes only. Full article
Show Figures

Figure 1

Back to TopTop