Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Ara glaucogularis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 429 KiB  
Communication
Impact of Broad-Spectrum Lighting on Recall Behaviour in a Pair of Captive Blue-Throated Macaws (Ara glaucogularis)
by Zoe Bryant, Eva Konczol and Christopher J. Michaels
J. Zool. Bot. Gard. 2022, 3(2), 177-183; https://doi.org/10.3390/jzbg3020015 - 13 Apr 2022
Cited by 2 | Viewed by 3421
Abstract
Many birds, including macaws, are highly visual animals able to detect a wide band of light wavelengths ranging into ultraviolet A, but in captivity, full-spectrum lighting is not universally employed. Where purpose-made bird lighting is used, this is typically made with the provision [...] Read more.
Many birds, including macaws, are highly visual animals able to detect a wide band of light wavelengths ranging into ultraviolet A, but in captivity, full-spectrum lighting is not universally employed. Where purpose-made bird lighting is used, this is typically made with the provision of ultraviolet B radiation and vitamin D3 synthesis in mind. Limited research in this field suggests behavioural and physiological benefits of broad-spectrum lighting provision, but more work is needed to broaden the taxonomic scope and to investigate its impacts on understudied areas of husbandry, including behavioural management. We compared the duration of time a bonded pair of blue-throated macaws at ZSL London Zoo opted to remain in an inside den after being recalled from an outdoors flight aviary, with and without the presence of artificial lighting in the form of High Output T5 Fluorescent lamps, which are rich in UVA and UVB wavelengths as well as those visible to humans. We hypothesized that the birds would remain inside for longer when T5 lighting was on, as they would be more visually comfortable. Using randomization analyses, we show that, over 54 trials split between winter and spring, the mean duration spent inside after recall increased from 81.04 to 515.13 s with the presence of the lighting unit, which was highly statistically significant. Our results are likely to be explained by much higher visibility of indoor surroundings creating a more hospitable indoor environment for the birds and will have implications for captive macaw management. Full article
Show Figures

Figure 1

15 pages, 5463 KiB  
Article
Satellite Telemetry of Blue-Throated Macaws in Barba Azul Nature Reserve (Beni, Bolivia) Reveals Likely Breeding Areas
by Lisa C. Davenport, Tjalle Boorsma, Lucas Carrara, Paulo de Tarso Zuquim Antas, Luciene Faria, Donald J. Brightsmith, Sebastian K. Herzog, Rodrigo W. Soria-Auza and A. Bennett Hennessey
Diversity 2021, 13(11), 564; https://doi.org/10.3390/d13110564 - 5 Nov 2021
Cited by 4 | Viewed by 4894
Abstract
The Blue-throated Macaw (Ara glaucogularis) is a Critically Endangered species endemic to the Llanos de Moxos ecosystem of Beni, Bolivia. To aid conservation of the northwestern population that utilizes the Barba Azul Nature Reserve during the non-breeding season, we set out to [...] Read more.
The Blue-throated Macaw (Ara glaucogularis) is a Critically Endangered species endemic to the Llanos de Moxos ecosystem of Beni, Bolivia. To aid conservation of the northwestern population that utilizes the Barba Azul Nature Reserve during the non-breeding season, we set out to learn the sites where these birds breed using satellite telemetry. We describe preliminary tests conducted on captive birds (at Loro Parque Foundation, Tenerife, Spain) that resulted in choosing Geotrak Parrot Collars, a metal, battery-operated unit that provides data through the Argos satellite system. In September 2019, we tagged three birds in Barba Azul with Geotrak collars, and received migration data for two birds, until battery depletion in November and December 2019. Our two migrant birds were tracked leaving Barba Azul on the same date (27 September), but departed in divergent directions (approximately 90 degrees in separation). They settled in two sites approximately 50–100 km from Barba Azul. Some details of the work are restricted out of conservation concern as the species still faces poaching pressures. Knowing their likely breeding grounds, reserve managers conducted site visits to where the birds were tracked, resulting in the discovery of breeding birds, although no birds still carrying a transmitter were seen then. A single individual still carrying its collar was spotted 13 August 2021 at Barba Azul. The work suggests that the Blue-throated Macaws of Barba Azul use breeding sites that are scattered across the Llanos de Moxos region, although within the recognized boundaries of the northwestern subpopulation. We conclude that the use of satellite collars is a feasible option for research with the species and could provide further conservation insights. Full article
Show Figures

Figure 1

17 pages, 1128 KiB  
Article
Genetic Diversity and Population Structure of Two Endangered Neotropical Parrots Inform In Situ and Ex Situ Conservation Strategies
by Carlos I. Campos, Melinda A. Martinez, Daniel Acosta, Jose A. Diaz-Luque, Igor Berkunsky, Nadine L. Lamberski, Javier Cruz-Nieto, Michael A. Russello and Timothy F. Wright
Diversity 2021, 13(8), 386; https://doi.org/10.3390/d13080386 - 17 Aug 2021
Cited by 8 | Viewed by 5194
Abstract
A key aspect in the conservation of endangered populations is understanding patterns of genetic variation and structure, which can provide managers with critical information to support evidence-based status assessments and management strategies. This is especially important for species with small wild and larger [...] Read more.
A key aspect in the conservation of endangered populations is understanding patterns of genetic variation and structure, which can provide managers with critical information to support evidence-based status assessments and management strategies. This is especially important for species with small wild and larger captive populations, as found in many endangered parrots. We used genotypic data to assess genetic variation and structure in wild and captive populations of two endangered parrots, the blue-throated macaw, Ara glaucogularis, of Bolivia, and the thick-billed parrot, Rhynchopsitta pachyrhyncha, of Mexico. In the blue-throated macaw, we found evidence of weak genetic differentiation between wild northern and southern subpopulations, and between wild and captive populations. In the thick-billed parrot we found no signal of differentiation between the Madera and Tutuaca breeding colonies or between wild and captive populations. Similar levels of genetic diversity were detected in the wild and captive populations of both species, with private alleles detected in captivity in both, and in the wild in the thick-billed parrot. We found genetic signatures of a bottleneck in the northern blue-throated macaw subpopulation, but no such signal was identified in any other subpopulation of either species. Our results suggest both species could potentially benefit from reintroduction of genetic variation found in captivity, and emphasize the need for genetic management of captive populations. Full article
Show Figures

Figure 1

17 pages, 3359 KiB  
Article
Tracking Changes of Hidden Food: Spatial Pattern Learning in Two Macaw Species
by Pizza Ka Yee Chow, James R. Davies, Awani Bapat and Auguste M. P. von Bayern
Birds 2021, 2(3), 285-301; https://doi.org/10.3390/birds2030021 - 9 Aug 2021
Cited by 1 | Viewed by 4696
Abstract
Food availability may vary spatially and temporally within an environment. Efficiency in locating alternative food sources using spatial information (e.g., distribution patterns) may vary according to a species’ diet and habitat specialisation. Hypothetically, more generalist species would learn faster than more specialist species [...] Read more.
Food availability may vary spatially and temporally within an environment. Efficiency in locating alternative food sources using spatial information (e.g., distribution patterns) may vary according to a species’ diet and habitat specialisation. Hypothetically, more generalist species would learn faster than more specialist species due to being more explorative when changes occur. We tested this hypothesis in two closely related macaw species, differing in their degree of diet and habitat specialisation; the more generalist Great Green Macaw and the more specialist Blue-throated Macaw. We examined their spatial pattern learning performance under predictable temporal and spatial change, using a ‘poke box’ that contained hidden food placed within wells. Each week, the rewarded wells formed two patterns (A and B), which were changed on a mid-week schedule. We found that the two patterns varied in their difficulty. We also found that the more generalist Great Green Macaws took fewer trials to learn the easier pattern and made more mean correct responses in the difficult pattern than the more specialist Blue-throated Macaws, thus supporting our hypothesis. The better learning performance of the Great Green Macaws may be explained by more exploration and trading-off accuracy for speed. These results suggest how variation in diet and habitat specialisation may relate to a species’ ability to adapt to spatial variation in food availability. Full article
(This article belongs to the Special Issue Feature Papers of Birds 2021)
Show Figures

Figure 1

Back to TopTop