Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Al2O3/ZrO2/YAG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12118 KiB  
Article
Whole Rock, Mineral Chemistry during Skarn Mineralization-Case Study from Tongshan Cu-Mo Skarn Profile
by Ran Bi, Fangyue Wang and Wenqi Zhang
Appl. Sci. 2023, 13(14), 8118; https://doi.org/10.3390/app13148118 - 12 Jul 2023
Cited by 7 | Viewed by 4275
Abstract
Studying the activation, migration and precipitation processes of ore-forming elements is essential for understanding the genesis and mechanisms of skarn deposits. A typical skarn profile formed by the intrusion of Yanshanian granodiorite into the Carboniferous carbonate strata was studied. The profile is highly [...] Read more.
Studying the activation, migration and precipitation processes of ore-forming elements is essential for understanding the genesis and mechanisms of skarn deposits. A typical skarn profile formed by the intrusion of Yanshanian granodiorite into the Carboniferous carbonate strata was studied. The profile is highly consistent with the classic skarn profile, ranging from the intrusion, weak alteration belt, skarn belt (inner and outer skarn belt) and mineralization belt (mainly characterized by Cu mineralization) to the surrounding marble without being affected by late-stage low-temperature or supergene weathering alteration. Whole-rock data show that the major and trace elements exhibit relatively small changes in the granodiorite and inner skarn, but huge variation in the boundary between the inner and outer skarn; Na, Al, Ti and Sr show significant decreases, while Fe, Mg, Zn, V and Ni show significant increases. The elemental content in the outer skarn is 10–100 times or more higher than that in the marble, but the elements such as Ca, Sr and Cs diluted from the marble. During the migration process from the inner skarn to the outer skarn, some elements (such as K, Rb and Ba) were depleted in the inner, but not enriched in the outer, indicating that they may migrate to farther locations. Grossularite developed in the inner skarn, with light rare earth element (LREE) depletion and heavy REE enrichment, as well as positive and negative anomalies of Eu (δEu = 0.42–3.95). Andradite developed in the outer skarn, with zonation development, light REE enrichment, and heavy REE depletion and a positive Eu anomaly (δEu = 0.36–46.83). Some negative Eu anomalies appear at the edges of garnets in the outer skarn, indicating fluctuations in fO2 during the late skarn process. A positive correlation between Fe3+ and REE3+ in the garnets from the inner skarn, as well as between Al3+ and REE3+ from the outer skarn indicated that there are different YAG substitution mechanisms of REE between the inner and outer skarn. Low garnet REE contents and highly variable Y/Ho ratios in outer skarn suggest that the significant fluctuations in REEs may be primarily controlled by water-rock interactions. Considering the whole-rock major and trace element contents, as well as the trace element features of garnet, we found that whole-rock Na, Al, Ti and Sr elements, garnet Ti, Zr and Nb elements exhibit significant differences between the inner and outer skarn. These characteristics can be used to distinguish the boundary between the rock body and carbonate during the skarnification process. Full article
Show Figures

Figure 1

22 pages, 11290 KiB  
Article
Optimization of the Thickness and Interface Structure of Al2O3-YAG/ZrO1.5-YO1.5-TaO1.5/8YSZ/NiCoCrAlY Multilayer Thermal Barrier Coatings: A Finite Element Simulation
by Huai-Yu Su, Hong-Xia Zhou, Zhi-Jun Cao, Jia-Bao Wan, Yao Liu, Xiao-Wen Sun, Jia-Hui Su, Qian Wu and Liang Wang
Coatings 2022, 12(11), 1660; https://doi.org/10.3390/coatings12111660 - 1 Nov 2022
Cited by 2 | Viewed by 2115
Abstract
Thermal barrier coatings (TBCs) prepared using the atmospheric plasma spraying method fail mainly due to coating delamination caused by thermal mismatch in the absence of high temperature assessment. In this study, the thickness optimization of multiple ceramic layers in a TBCs and the [...] Read more.
Thermal barrier coatings (TBCs) prepared using the atmospheric plasma spraying method fail mainly due to coating delamination caused by thermal mismatch in the absence of high temperature assessment. In this study, the thickness optimization of multiple ceramic layers in a TBCs and the influence of the interface structure on the residual stress of the coating were investigated using a finite element simulation method. The results showed that varying the thickness of each layer of a TBCs with multiple ceramic layers affects the distribution and magnitude of the residual stress of the coating. Therefore, a reasonable range of thickness for each layer can be determined. The thickness of the bonding layer should be 110 μm, the thickness of YSZ layer should be about 270 μm, the thickness of tantalate layer should be about 70 μm, and the thickness of Al2O3-YAG layer should be about 100 μm. Simultaneously, the results show that a rough interface can be more effective in reducing the relief of stress concentrations compared to a smooth interface, but the stress values increase. Full article
Show Figures

Figure 1

17 pages, 7783 KiB  
Article
High-Temperature Oxidation Resistance of PDC Coatings in Synthetic Air and Water Vapor Atmospheres
by Milan Parchovianský, Ivana Parchovianská, Peter Švančárek, David Medveď, Mateus Lenz-Leite, Günter Motz and Dušan Galusek
Molecules 2021, 26(8), 2388; https://doi.org/10.3390/molecules26082388 - 20 Apr 2021
Cited by 12 | Viewed by 3315
Abstract
This work is aimed at the development and investigation of the oxidation behavior of ferritic stainless-steel grade AISI 441 and polymer-derived ceramic (PDC) protective coatings. Double-layer coatings of a PDC bond coat below a PDC top coat with glass and ceramic passive fillers’ [...] Read more.
This work is aimed at the development and investigation of the oxidation behavior of ferritic stainless-steel grade AISI 441 and polymer-derived ceramic (PDC) protective coatings. Double-layer coatings of a PDC bond coat below a PDC top coat with glass and ceramic passive fillers’ oxidative resistance were studied at temperatures up to 1000 °C in a flow-through atmosphere of synthetic air and in air saturated with water vapor. Investigation of the oxide products formed at the surface of the samples in synthetic air and water vapor atmospheres, at different temperatures (900, 950, 1000 °C) and exposure times (24, 96 h) was carried out on both uncoated steel and steel coated with selected coatings by scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The Fe, Cr2O3, TiO2, and spinel (Mn,Cr)3O4 phases were identified by XRD on oxidized steel substrates in both atmospheres. In the cases of the coated samples, m- ZrO2, c- ZrO2, YAG, and crystalline phases (Ba(AlSiO4)2–hexacelsian, celsian) were identified. Scratch tests performed on both coating compositions revealed strong adhesion after pyrolysis as well as after oxidation tests in both atmospheres. After testing in the water vapor atmosphere, Cr ions diffused through the bond coat, but no delamination of the coatings was observed. Full article
Show Figures

Figure 1

9 pages, 4905 KiB  
Article
Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids
by José C. González, Miguel Á. Rodríguez, Ignacio A. Figueroa, María-Elena Villafuerte-Castrejón and Gerardo C. Díaz
Materials 2017, 10(3), 324; https://doi.org/10.3390/ma10030324 - 22 Mar 2017
Cited by 7 | Viewed by 4569
Abstract
The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. [...] Read more.
The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

14 pages, 10269 KiB  
Article
Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates
by Chi-Sheng Chien, Cheng-Wei Liu and Tsung-Yuan Kuo
Materials 2016, 9(5), 380; https://doi.org/10.3390/ma9050380 - 17 May 2016
Cited by 29 | Viewed by 6321
Abstract
Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite [...] Read more.
Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO2, 3Y-TZP). The FA/ZrO2 coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO2 is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca4(PO4)2O (TTCP), CaF2, CaZrO3, CaTiO3 and monoclinic phase ZrO2 (m-ZrO2), together with a small amount of θ-Al2O3. As the laser power is increased, CaO, CaCO3 and trace amounts of tetragonal phase ZrO2 (t-ZrO2) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO3 phase. Full article
(This article belongs to the Special Issue Solid-State Laser Materials)
Show Figures

Figure 1

14 pages, 1719 KiB  
Article
Al2O3/ZrO2/Y3Al5O12 Composites: A High-Temperature Mechanical Characterization
by Paola Palmero, Giovanni Pulci, Francesco Marra, Teodoro Valente and Laura Montanaro
Materials 2015, 8(2), 611-624; https://doi.org/10.3390/ma8020611 - 10 Feb 2015
Cited by 13 | Viewed by 7691
Abstract
An Al2O3/5 vol%·ZrO2/5 vol%·Y3Al5O12 (YAG) tri-phase composite was manufactured by surface modification of an alumina powder with inorganic precursors of the second phases. The bulk materials were produced by die-pressing and pressureless [...] Read more.
An Al2O3/5 vol%·ZrO2/5 vol%·Y3Al5O12 (YAG) tri-phase composite was manufactured by surface modification of an alumina powder with inorganic precursors of the second phases. The bulk materials were produced by die-pressing and pressureless sintering at 1500 °C, obtaining fully dense, homogenous samples, with ultra-fine ZrO2 and YAG grains dispersed in a sub-micronic alumina matrix. The high temperature mechanical properties were investigated by four-point bending tests up to 1500 °C, and the grain size stability was assessed by observing the microstructural evolution of the samples heat treated up to 1700 °C. Dynamic indentation measures were performed on as-sintered and heat-treated Al2O3/ZrO2/YAG samples in order to evaluate the micro-hardness and elastic modulus as a function of re-heating temperature. The high temperature bending tests highlighted a transition from brittle to plastic behavior comprised between 1350 and 1400 °C and a considerable flexural strength reduction at temperatures higher than 1400 °C; moreover, the microstructural investigations carried out on the re-heated samples showed a very limited grain growth up to 1650 °C. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop