Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = AfroDb

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7028 KB  
Article
Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors
by Moses N. Arthur, George Hanson, Emmanuel Broni, Patrick O. Sakyi, Henrietta Mensah-Brown, Whelton A. Miller and Samuel K. Kwofie
Pharmaceuticals 2025, 18(1), 6; https://doi.org/10.3390/ph18010006 - 24 Dec 2024
Cited by 5 | Viewed by 3110
Abstract
Background/Objectives: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness [...] Read more.
Background/Objectives: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs. Methods: This study addresses the urgent need for novel, cost-effective drugs by employing in silico techniques to identify potential lead compounds targeting the PTR1 enzyme. A library of 1463 natural compounds from AfroDb and NANPDB, prefiltered based on Lipinski’s rules, was used to screen against the LmPTR1 target. The X-ray structure of LmPTR1 complexed with NADP and dihydrobiopterin (Protein Data Bank ID: 1E92) was identified to contain the critical residues Arg17, Leu18, Ser111, Phe113, Pro224, Gly225, Ser227, Leu229, and Val230 including the triad of residues Asp181-Tyr194-Lys198, which are critical for the catalytic process involving the reduction of dihydrofolate to tetrahydrofolate. Results: The docking yielded 155 compounds meeting the stringent criteria of −8.9 kcal/mol instead of the widely used −7.0 kcal/mol. These compounds demonstrated binding affinities comparable to the known inhibitors; methotrexate (−9.5 kcal/mol), jatrorrhizine (−9.0 kcal/mol), pyrimethamine (−7.3 kcal/mol), hardwickiic acid (−8.1 kcal/mol), and columbamine (−8.6 kcal/mol). Protein–ligand interactions and molecular dynamics (MD) simulation revealed favorable hydrophobic and hydrogen bonding with critical residues, such as Lys198, Arg17, Ser111, Tyr194, Asp181, and Gly225. Crucial to the drug development, the compounds were physiochemically and pharmacologically profiled, narrowing the selection to eight compounds, excluding those with potential toxicities. The five selected compounds ZINC000095486253, ZINC000095486221, ZINC000095486249, 8alpha-hydroxy-13-epi-pimar-16-en-6,18-olide, and pachycladin D were predicted to be antiprotozoal (Leishmania) with Pa values of 0.642, 0.297, 0.543, 0.431, and 0.350, respectively. Conclusions: This study identified five lead compounds that showed substantial binding affinity against LmPTR1 as well as critical residue interactions. A 100 ns MD combined with molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations confirmed the robust binding interactions and provided insights into the dynamics and stability of the protein–ligand complexes. Full article
Show Figures

Figure 1

34 pages, 4681 KB  
Article
Cheminformatics-Based Study Identifies Potential Ebola VP40 Inhibitors
by Emmanuel Broni, Carolyn Ashley, Joseph Adams, Hammond Manu, Ebenezer Aikins, Mary Okom, Whelton A. Miller, Michael D. Wilson and Samuel K. Kwofie
Int. J. Mol. Sci. 2023, 24(7), 6298; https://doi.org/10.3390/ijms24076298 - 27 Mar 2023
Cited by 18 | Viewed by 4634
Abstract
The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. [...] Read more.
The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina’s capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of −8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 μM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (−46.97 to −118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds)
Show Figures

Figure 1

15 pages, 3039 KB  
Article
In Silico-Based Discovery of Natural Anthraquinones with Potential against Multidrug-Resistant E. coli
by Hani A. Alhadrami, Wesam H. Abdulaal, Hossam M. Hassan, Nabil A. Alhakamy and Ahmed M. Sayed
Pharmaceuticals 2022, 15(1), 86; https://doi.org/10.3390/ph15010086 - 11 Jan 2022
Cited by 13 | Viewed by 3840
Abstract
E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, [...] Read more.
E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, over 16,000 structures covering almost all African medicinal plants in AfroDb in a structural-based virtual screening were used to find efficient anti-E. coli candidates. These drug-like structures were docked into the active sites of two important molecular targets (i.e., E. coli’s Ddl-B and Gyr-B). The top-scoring hits (i.e., got docking scores < −10 kcal/mol) produced in the initial virtual screening (0.15% of the database structures for Ddl-B and 0.17% of the database structures for Gyr-B in the database) were further refined using molecular dynamic simulation-based binding free energy (ΔG) calculation. Anthraquinones were found to prevail among the retrieved hits. Accordingly, readily available anthraquinone derivatives (10 hits) were selected, prepared, and tested in vitro against Ddl-B, Gyr-B, multidrug-resistant (MDR) E. coli, MRSA, and VRSA. A number of the tested derivatives demonstrated strong micromolar enzyme inhibition and antibacterial activity against E. coli, MRSA, and VRSA, with MIC values ranging from 2 to 64 µg/mL. Moreover, both E. coli’s Ddl-B and Gyr-B were inhibited by emodin and chrysophanol with IC50 values comparable to the reference inhibitors (IC50 = 216 ± 5.6, 236 ± 8.9 and 0.81 ± 0.3, 1.5 ± 0.5 µM for Ddl-B and Gyr-B, respectively). All of the active antibacterial anthraquinone hits showed low to moderate cellular cytotoxicity (CC50 > 50 µM) against human normal fibroblasts (WI-38). Furthermore, molecular dynamic simulation (MDS) experiments were carried out to reveal the binding modes of these inhibitors inside the active site of each enzyme. The findings presented in this study are regarded as a significant step toward developing novel antibacterial agents against MDR strains. Full article
Show Figures

Figure 1

21 pages, 5300 KB  
Article
Molecular Informatics Studies of the Iron-Dependent Regulator (ideR) Reveal Potential Novel Anti-Mycobacterium ulcerans Natural Product-Derived Compounds
by Samuel K. Kwofie, Kweku S. Enninful, Jaleel A. Yussif, Lina A. Asante, Mavis Adjei, Kwabena Kan-Dapaah, Elvis K. Tiburu, Wilhelmina A. Mensah, Whelton A. Miller, Lydia Mosi and Michael D. Wilson
Molecules 2019, 24(12), 2299; https://doi.org/10.3390/molecules24122299 - 21 Jun 2019
Cited by 10 | Viewed by 5039
Abstract
Buruli ulcer is a neglected tropical disease caused by the bacterium Mycobacterium ulcerans. Its virulence is attributed to the dermo-necrotic polyketide toxin mycolactone, whose synthesis is regressed when its iron acquisition system regulated by the iron-dependent regulator (ideR) is deactivated. Interfering with the [...] Read more.
Buruli ulcer is a neglected tropical disease caused by the bacterium Mycobacterium ulcerans. Its virulence is attributed to the dermo-necrotic polyketide toxin mycolactone, whose synthesis is regressed when its iron acquisition system regulated by the iron-dependent regulator (ideR) is deactivated. Interfering with the activation mechanism of ideR to inhibit the toxin’s synthesis could serve as a possible cure for Buruli ulcer. The three-dimensional structure of the ideR for Mycobacterium ulcerans was generated using homology modeling. A library of 832 African natural products (AfroDB), as well as five known anti-mycobacterial compounds were docked against the metal binding site of the ideR. The area under the curve (AUC) values greater than 0.7 were obtained for the computed Receiver Operating Characteristics (ROC) curves, validating the docking protocol. The identified top hits were pharmacologically profiled using Absorption, Distribution, Metabolism, Elimination and Toxicity (ADMET) predictions and their binding mechanisms were characterized. Four compounds with ZINC IDs ZINC000018185774, ZINC000095485921, ZINC000014417338 and ZINC000005357841 emerged as leads with binding energies of −7.7 kcal/mol, −7.6 kcal/mol, −8.0 kcal/mol and −7.4 kcal/mol, respectively. Induced Fit Docking (IFD) was also performed to account for the protein’s flexibility upon ligand binding and to estimate the best plausible conformation of the complexes. Results obtained from the IFD were consistent with that of the molecular docking with the lead compounds forming interactions with known essential residues and some novel critical residues Thr14, Arg33 and Asp17. A hundred nanoseconds molecular dynamic simulations of the unbound ideR and its complexes with the respective lead compounds revealed changes in the ideR’s conformations induced by ZINC000018185774. Comparison of the lead compounds to reported potent inhibitors by docking them against the DNA-binding domain of the protein also showed the lead compounds to have very close binding affinities to those of the potent inhibitors. Interestingly, structurally similar compounds to ZINC000018185774 and ZINC000014417338, as well as analogues of ZINC000095485921, including quercetin are reported to possess anti-mycobacterial activity. Also, ZINC000005357841 was predicted to possess anti-inflammatory and anti-oxidative activities, which are relevant in Buruli ulcer and iron acquisition mechanisms, respectively. The leads are molecular templates which may serve as essential scaffolds for the design of future anti-mycobacterium ulcerans agents. Full article
Show Figures

Figure 1

31 pages, 6453 KB  
Article
In Silico Screening of Isocitrate Lyase for Novel Anti-Buruli Ulcer Natural Products Originating from Africa
by Samuel K. Kwofie, Bismark Dankwa, Emmanuel A. Odame, Francis E. Agamah, Lady P. A. Doe, Joshua Teye, Odame Agyapong, Whelton A. Miller, Lydia Mosi and Michael D. Wilson
Molecules 2018, 23(7), 1550; https://doi.org/10.3390/molecules23071550 - 27 Jun 2018
Cited by 48 | Viewed by 10311
Abstract
Buruli ulcer (BU) is caused by Mycobacterium ulcerans and is predominant in both tropical and subtropical regions. The neglected debilitating disease is characterized by chronic necrotizing skin lesions attributed to a mycolactone, which is a macrolide toxin secreted by M. ulcerans. The [...] Read more.
Buruli ulcer (BU) is caused by Mycobacterium ulcerans and is predominant in both tropical and subtropical regions. The neglected debilitating disease is characterized by chronic necrotizing skin lesions attributed to a mycolactone, which is a macrolide toxin secreted by M. ulcerans. The preferred treatment is surgical excision of the lesions followed by a prolonged combination antibiotic therapy using existing drugs such as rifampicin and streptomycin or clarithromycin. These antibiotics appear not to be adequately potent and efficacious against persistent and late stage ulcers. In addition, emerging drug resistance to treatment poses great challenges. There is a need to identify novel natural product-derived lead compounds, which are potent and efficacious for the treatment of Buruli ulcer. Natural products present a rich diversity of chemical compounds with proven activity against various infectious diseases, and therefore, are considered in this study. This study sought to computationally predict natural product-derived lead compounds with the potential to be developed further into potent drugs with better therapeutic efficacy than the existing anti-buruli ulcer compounds. The three-dimensional (3D) structure of Isocitrate lyase (ICL) of Mycobacterium ulcerans was generated using homology modeling and was further scrutinized with molecular dynamics simulations. A library consisting of 885 compounds retrieved from the AfroDb database was virtually screened against the validated ICL model using AutoDock Vina. AfroDb is a compendium of “drug-like” and structurally diverse 3D structures of natural products originating from different geographical regions in Africa. The molecular docking with the ICL model was validated by computing a Receiver Operating Characteristic (ROC) curve with a reasonably good Area Under the Curve (AUC) value of 0.89375. Twenty hit compounds, which docked firmly within the active site pocket of the ICL receptor, were assessed via in silico bioactivity and pharmacological profiling. The three compounds, which emerged as potential novel leads, comprise ZINC38143792 (Euscaphic acid), ZINC95485880, and ZINC95486305 with reasonable binding energies (high affinity) of −8.6, −8.6, and −8.8 kcal/mol, respectively. Euscaphic acid has been reported to show minimal inhibition against a drug-sensitive strain of M. tuberculosis. The other two leads were both predicted to possess dermatological activity while one was antibacterial. The leads have shown promising results pertaining to efficacy, toxicity, pharmacokinetic, and safety. These leads can be experimentally characterized to assess their anti-mycobacterial activity and their scaffolds may serve as rich skeletons for developing anti-buruli ulcer drugs. Full article
Show Figures

Figure 1

Back to TopTop